Micro-Mechanical Response of an Al-Mg Hybrid System Synthesized by High-Pressure Torsion.
Ontology highlight
ABSTRACT: This paper summarizes recent efforts to evaluate the potential for the formation of a metal matrix nanocomposite (MMNC) by processing two commercial bulk metals of aluminum and magnesium alloy through high-pressure torsion (HPT) at room temperature. After significant evolutions in microstructures, successful fabrication of an Al-Mg hybrid system was demonstrated by observing unique microstructures consisting of a multi-layered structure and MMNC. Moreover, the evolution of small-scale mechanical properties was examined through the novel technique of nanoindentation and the improvement in plasticity was estimated by calculating the strain rate sensitivity of the Al-Mg hybrid system after HPT. The present paper demonstrates that, in addition to conventional tensile testing, the nanoindentation technique is exceptionally promising for ultrafine-grained materials processed by HPT, where the samples may have small overall dimensions and include heterogeneity in the microstructure.
SUBMITTER: Kawasaki M
PROVIDER: S-EPMC5553413 | biostudies-other | 2017 May
REPOSITORIES: biostudies-other
ACCESS DATA