Noise of a superconducting magnetic flux sensor based on a proximity Josephson junction.
Ontology highlight
ABSTRACT: We demonstrate simultaneous measurements of DC transport properties and flux noise of a hybrid superconducting magnetometer based on the proximity effect (superconducting quantum interference proximity transistor, SQUIPT). The noise is probed by a cryogenic amplifier operating in the frequency range of a few MHz. In our non-optimized device, we achieve minimum flux noise ~4 μΦ0/Hz1/2, set by the shot noise of the probe tunnel junction. The flux noise performance can be improved by further optimization of the SQUIPT parameters, primarily minimization of the proximity junction length and cross section. Furthermore, the experiment demonstrates that the setup can be used to investigate shot noise in other nonlinear devices with high impedance. This technique opens the opportunity to measure sensitive magnetometers including SQUIPT devices with very low dissipation.
Project description:Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. As such devices become more complex, the requirements for reproducibility of their electrical properties across a chip are being tightened. Critical current of the Josephson junction Ic is the essential electrical parameter in a chip. So, its variation is to be minimized. According to the Ambegaokar-Baratoff formula, critical current is related to normal-state resistance, which can be measured at room temperature. In this study, we focused on the dominant source of non-uniformity for the Josephson junction critical current-junction area variation. We optimized Josephson junction fabrication process and demonstrated resistance variation of 9.8-4.4% and 4.8-2.3% across 22 × 22 mm2 and 5 × 10 mm2 chip areas, respectively. For a wide range of junction areas from 0.008 to 0.12 μm2, we ensure a small linewidth standard deviation of 4 nm measured over 4500 junctions with linear dimensions from 80 to 680 nm. We found that the dominate source of junction area variation limiting [Formula: see text] reproducibility is the imperfection of the evaporation system. The developed fabrication process was tested on superconducting highly coherent transmon qubits (T1 > 100 μs) and a nonlinear asymmetric inductive element parametric amplifier.
Project description:We investigate the direction-dependent switching current in a flux-tunable four-terminal Josephson junction defined in an InAs/Al two-dimensional heterostructure. The device exhibits the Josephson diode effect with switching currents that depend on the sign of the bias current. The superconducting diode efficiency, reaching a maximum of |η| ≈ 34%, is widely tunable─both in amplitude and sign─as a function of magnetic fluxes and gate voltages. Our observations are supported by a circuit model of three parallel Josephson junctions with nonsinusoidal current-phase relation. With respect to conventional Josephson interferometers, phase-tunable multiterminal Josephson junctions enable large diode efficiencies in structurally symmetric devices, where local magnetic fluxes generated on the chip break both time-reversal and spatial symmetries. Our work presents an approach for developing Josephson diodes with wide-range tunability that do not rely on exotic materials.
Project description:The fundamental noise limit of a phase-preserving amplifier at frequency [Formula: see text] is the standard quantum limit [Formula: see text]. In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature [Formula: see text] at 700?MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit [Formula: see text] at 8?GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, [Formula: see text] at 2.8?GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation.
Project description:Accurate characterization of the noise influencing a quantum system of interest has far-reaching implications across quantum science, ranging from microscopic modeling of decoherence dynamics to noise-optimized quantum control. While the assumption that noise obeys Gaussian statistics is commonly employed, noise is generically non-Gaussian in nature. In particular, the Gaussian approximation breaks down whenever a qubit is strongly coupled to discrete noise sources or has a non-linear response to the environmental degrees of freedom. Thus, in order to both scrutinize the applicability of the Gaussian assumption and capture distinctive non-Gaussian signatures, a tool for characterizing non-Gaussian noise is essential. Here, we experimentally validate a quantum control protocol which, in addition to the spectrum, reconstructs the leading higher-order spectrum of engineered non-Gaussian dephasing noise using a superconducting qubit as a sensor. This first experimental demonstration of non-Gaussian noise spectroscopy represents a major step toward demonstrating a complete spectral estimation toolbox for quantum devices.
Project description:In two-dimensional (2D) NbSe2 crystal, which lacks inversion symmetry, strong spin-orbit coupling aligns the spins of Cooper pairs to the orbital valleys, forming Ising Cooper pairs (ICPs). The unusual spin texture of ICPs can be further modulated by introducing magnetic exchange. Here, we report unconventional supercurrent phase in van der Waals heterostructure Josephson junctions (JJs) that couples NbSe2 ICPs across an atomically thin magnetic insulator (MI) Cr2Ge2Te6. By constructing a superconducting quantum interference device (SQUID), we measure the phase of the transferred Cooper pairs in the MI JJ. We demonstrate a doubly degenerate nontrivial JJ phase (ϕ), formed by momentum-conserving tunneling of ICPs across magnetic domains in the barrier. The doubly degenerate ground states in MI JJs provide a two-level quantum system that can be utilized as a new dissipationless component for superconducting quantum devices. Our work boosts the study of various superconducting states with spin-orbit coupling, opening up an avenue to designing new superconducting phase-controlled quantum electronic devices.
Project description:We study the phase-dependent thermal transport of a short temperature-biased Josephson junction based on two-dimensional electron gas (2DEG) with both Rashba and Dresselhaus couplings. Except for thermal equilibrium temperature T, characters of thermal transport can also be manipulated by interaction parameter h0 and the parameter [Formula: see text] . A larger value and a sharper switching behavior of thermal conductance can be obtained if h0 takes suitable values and [Formula: see text] is larger. Finally, we propose a possible experimental setup based on the discussed Josephson junction and find that the temperature of the right superconducting electrode TR is influenced by the same three parameters in a similar way with thermal conductance. This setup may provide a valid method to select moderately-doped 2DEG materials and superconducting electrodes to control the change of temperature and obtain an efficient temperature regulator.
Project description:A 4 π -periodic supercurrent through a Josephson junction can be a consequence of the presence of Majorana bound states. A systematic study of the radio frequency response for several temperatures and frequencies yields a concrete protocol for examining the 4 π -periodic contribution to the supercurrent. This work also reports the observation of a 4 π -periodic contribution to the supercurrent in BiSbTeSe 2 -based Josephson junctions. As a response to irradiation by radio frequency waves, the junctions showed an absence of the first Shapiro step. At high irradiation power, a qualitative correspondence to a model including a 4 π -periodic component to the supercurrent is found.
Project description:Here we report the fabrication and characterization of fully superconducting quantum interference proximity transistors (SQUIPTs) based on the implementation of vanadium (V) in the superconducting loop. At low temperature, the devices show high flux-to-voltage (up to 0.52 mV/Φ0) and flux-to-current (above 12 nA/Φ0) transfer functions, with the best estimated flux sensitivity ~ 2.6 μΦ0/(Hz)1/2 reached under fixed voltage bias, where Φ0 is the flux quantum. The interferometers operate up to T bath [Formula: see text] 2 K, with an improvement of 70% of the maximal operating temperature with respect to early SQUIPTs design. The main features of the V-based SQUIPT are described within a simplified theoretical model. Our results open the way to the realization of SQUIPTs that take advantage of the use of higher-gap superconductors for ultra-sensitive nanoscale applications that operate at temperatures well above 1 K.
Project description:One Majorana doublet can be realized at each end of the time-reversal-invariant Majorana nanowires. We investigate the Josephson effect in the Majorana-doublet-presented junction modified by different inter-doublet coupling manners. It is found that when the Majorana doublets couple indirectly via a non-magnetic quantum dot, only the normal Josephson effect occurs, and the fermion parity in the system just affects the current direction and amplitude. However, one magnetic field applied on the dot can induce the fractional Josephson effect in the odd-parity case. Next if the direct and indirect couplings between the Majorana doublets coexist, no fractional Josephson effect takes place, regardless of the presence of magnetic field. Instead, there almost appears the π-period-like current in some special cases. All the results are clarified by analyzing the influence of the fermion occupation in the quantum dot on the parity conservation in the whole system. We ascertain that this work will be helpful for describing the dot-assisted Josephson effect between the Majorana doublets.
Project description:Nonreciprocal microwave devices play critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They impose unidirectional routing of readout signals and protect the quantum systems from unwanted noise originated by the output chain. However, cryogenic circulators and isolators are disadvantageous in scalable superconducting architectures because they use magnetic materials and strong magnetic fields. Here, we realize an active isolator formed by coupling two nondegenerate Josephson mixers in an interferometric scheme and driving them with phase-shifted, same-frequency pumps. By incorporating our Josephson-based isolator into a superconducting qubit setup, we demonstrate fast, high-fidelity, QND measurements of the qubit while providing 20 dB of protection within a bandwidth of 10 MHz against amplified noise reflected off the Josephson amplifier in the output chain. A moderate reduction of 35% is observed in T2E when the Josephson-based isolator is turned on. Such a moderate degradation can be mitigated by minimizing heat dissipation in the pump lines.