Unknown

Dataset Information

0

2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells.


ABSTRACT: 2,4,6-trinitrotoluene (TNT) has been reported to cause numerous adverse effects. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity need to be elucidated. In this study, we used HepG2 (p53wt) and Hep3B (p53null) cell lines to investigate the cytotoxic effects of TNT. At first, we found that TNT significantly decreased cell viability and induced DNA damage. Thereafter, through transcriptomic analysis, we observed that the diverse biological functions affected included mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial dysfunction was evidenced by the loss of mitochondrial membrane potential, increased expression of cleaved-caspase-9&-3 and increased caspase-3/7 activity, indicating that apoptosis had occurred. In addition, the expressions of some ER stress-related proteins had increased. Next, we investigated the role of reactive oxygen species (ROS) in TNT-induced cellular toxicity. The levels of DNA damage, mitochondrial dysfunction, ER stress and apoptosis were alleviated when the cells were pretreated with N-acetyl-cysteine (NAC). These results indicated that TNT caused the ROS dependent apoptosis via ER stress and mitochondrial dysfunction. Finally, the cells transfected with CHOP siRNA significantly reversed the TNT-induced apoptosis, which indicated that ER stress led to apoptosis. Overall, we examined TNT-induced apoptosis via ROS dependent mitochondrial dysfunction and ER stress in HepG2 and Hep3B cells.

SUBMITTER: Liao HY 

PROVIDER: S-EPMC5557873 | biostudies-other | 2017 Aug

REPOSITORIES: biostudies-other

altmetric image

Publications

2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells.

Liao Hung-Yu HY   Kao Chih-Ming CM   Yao Chao-Ling CL   Chiu Po-Wei PW   Yao Chun-Chen CC   Chen Ssu-Ching SC  

Scientific reports 20170815 1


2,4,6-trinitrotoluene (TNT) has been reported to cause numerous adverse effects. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity need to be elucidated. In this study, we used HepG2 (p53wt) and Hep3B (p53null) cell lines to investigate the cytotoxic effects of TNT. At first, we found that TNT significantly decreased cell viability and induced DNA damage. Thereafter, through transcriptomic analysis, we observed that the diverse biological functions affected include  ...[more]

Similar Datasets

| S-EPMC4746894 | biostudies-other
| S-EPMC6059687 | biostudies-literature
| S-EPMC6933352 | biostudies-literature
| S-EPMC3429326 | biostudies-literature
| S-EPMC5347786 | biostudies-literature
| S-EPMC7189383 | biostudies-literature
| S-EPMC5876643 | biostudies-literature
| S-EPMC1142564 | biostudies-literature
| S-EPMC4742825 | biostudies-other
| S-EPMC5362958 | biostudies-literature