Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus.
Ontology highlight
ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA), are the most frequent cause of sepsis, which urgently demanding new drugs for treating infection. Two homologous insect CS?? peptides-DLP2 and DLP4 from Hermetia illucens were firstly expressed in Pichia pastoris, with the yields of 873.5 and 801.3?mg/l, respectively. DLP2 and DLP4 displayed potent antimicrobial activity against Gram-positive bacteria especially MRSA and had greater potency, faster killing, and a longer postantibiotic effect than vancomycin. A 30-d serial passage of MRSA in the presence of DLP2/DLP4 failed to produce resistant mutants. Macromolecular synthesis showed that DLP2/DLP4 inhibited multi-macromolecular synthesis especially for RNA. Flow cytometry and electron microscopy results showed that the cell cycle was arrested at R-phase; the cytoplasmic membrane and cell wall were broken by DLP2/DLP4; mesosome-like structures were observed in MRSA. At the doses of 3?7.5?mg/kg DLP2 or DLP4, the survival of mice challenged with MRSA were 80?100%. DLP2 and DLP4 reduced the bacterial translocation burden over 95% in spleen and kidneys; reduced serum pro-inflammatory cytokines levels; promoted anti-inflammatory cytokines levels; and ameliorated lung and spleen injury. These data suggest that DLP2 and DLP4 may be excellent candidates for novel antimicrobial peptides against staphylococcal infections.
SUBMITTER: Li Z
PROVIDER: S-EPMC5608901 | biostudies-other | 2017 Sep
REPOSITORIES: biostudies-other
ACCESS DATA