Unknown

Dataset Information

0

Structure-Dependent Interfacial Properties of Chaplin F from Streptomyces coelicolor.


ABSTRACT: Chaplin F (Chp F) is a secreted surface-active peptide involved in the aerial growth of Streptomyces. While Chp E demonstrates a pH-responsive surface activity, the relationship between Chp F structure, function and the effect of solution pH is unknown. Chp F peptides were found to self-assemble into amyloid fibrils at acidic pH (3.0 or the isoelectric point (pI) of 4.2), with ~99% of peptides converted into insoluble fibrils. In contrast, Chp F formed short assemblies containing a mixture of random coil and ?-sheet structure at a basic pH of 10.0, where only 40% of the peptides converted to fibrils. The cysteine residues in Chp F did not appear to play a role in fibril assembly. The interfacial properties of Chp F at the air/water interface were altered by the structures adopted at different pH, with Chp F molecules forming a higher surface-active film at pH 10.0 with a lower area per molecule compared to Chp F fibrils at pH 3.0. These data show that the pH responsiveness of Chp F surface activity is the reverse of that observed for Chp E, which could prove useful in potential applications where surface activity is desired over a wide range of solution pH.

SUBMITTER: Dokouhaki M 

PROVIDER: S-EPMC5618249 | biostudies-other | 2017 Sep

REPOSITORIES: biostudies-other

altmetric image

Publications

Structure-Dependent Interfacial Properties of Chaplin F from Streptomyces coelicolor.

Dokouhaki Mina M   Prime Emma L EL   Hung Andrew A   Qiao Greg G GG   Day Li L   Gras Sally L SL  

Biomolecules 20170919 3


Chaplin F (Chp F) is a secreted surface-active peptide involved in the aerial growth of <i>Streptomyces</i>. While Chp E demonstrates a pH-responsive surface activity, the relationship between Chp F structure, function and the effect of solution pH is unknown. Chp F peptides were found to self-assemble into amyloid fibrils at acidic pH (3.0 or the isoelectric point (pI) of 4.2), with ~99% of peptides converted into insoluble fibrils. In contrast, Chp F formed short assemblies containing a mixtur  ...[more]

Similar Datasets

| S-EPMC2564891 | biostudies-literature
| S-EPMC2620802 | biostudies-literature
| S-EPMC4282423 | biostudies-literature
| S-EPMC107596 | biostudies-literature
| S-EPMC2602773 | biostudies-literature
| S-EPMC3784963 | biostudies-literature
| S-EPMC6261592 | biostudies-literature
| S-EPMC177330 | biostudies-other
| S-EPMC2140096 | biostudies-literature
| S-EPMC3776143 | biostudies-literature