Unknown

Dataset Information

0

Probabilistic models for neural populations that naturally capture global coupling and criticality.


ABSTRACT: Advances in multi-unit recordings pave the way for statistical modeling of activity patterns in large neural populations. Recent studies have shown that the summed activity of all neurons strongly shapes the population response. A separate recent finding has been that neural populations also exhibit criticality, an anomalously large dynamic range for the probabilities of different population activity patterns. Motivated by these two observations, we introduce a class of probabilistic models which takes into account the prior knowledge that the neural population could be globally coupled and close to critical. These models consist of an energy function which parametrizes interactions between small groups of neurons, and an arbitrary positive, strictly increasing, and twice differentiable function which maps the energy of a population pattern to its probability. We show that: 1) augmenting a pairwise Ising model with a nonlinearity yields an accurate description of the activity of retinal ganglion cells which outperforms previous models based on the summed activity of neurons; 2) prior knowledge that the population is critical translates to prior expectations about the shape of the nonlinearity; 3) the nonlinearity admits an interpretation in terms of a continuous latent variable globally coupling the system whose distribution we can infer from data. Our method is independent of the underlying system's state space; hence, it can be applied to other systems such as natural scenes or amino acid sequences of proteins which are also known to exhibit criticality.

SUBMITTER: Humplik J 

PROVIDER: S-EPMC5621705 | biostudies-other | 2017 Sep

REPOSITORIES: biostudies-other

altmetric image

Publications

Probabilistic models for neural populations that naturally capture global coupling and criticality.

Humplik Jan J   Tkačik Gašper G  

PLoS computational biology 20170919 9


Advances in multi-unit recordings pave the way for statistical modeling of activity patterns in large neural populations. Recent studies have shown that the summed activity of all neurons strongly shapes the population response. A separate recent finding has been that neural populations also exhibit criticality, an anomalously large dynamic range for the probabilities of different population activity patterns. Motivated by these two observations, we introduce a class of probabilistic models whic  ...[more]

Similar Datasets

| S-EPMC4795615 | biostudies-literature
| S-EPMC9237050 | biostudies-literature
| S-EPMC5446191 | biostudies-literature
| S-EPMC5037237 | biostudies-literature
| S-EPMC9882570 | biostudies-literature
| S-EPMC9910757 | biostudies-literature
| S-EPMC9633802 | biostudies-literature
| S-EPMC9327979 | biostudies-literature
| S-EPMC9122121 | biostudies-literature
| S-EPMC10075456 | biostudies-literature