Unknown

Dataset Information

0

Improving extinction projections across scales and habitats using the countryside species-area relationship.


ABSTRACT: The species-area relationship (SAR) has been often used to project species extinctions as a consequence of habitat loss. However, recent studies have suggested that the SAR may overestimate species extinctions, at least in the short-term. We argue that the main reason for this overestimation is that the classic SAR ignores the persistence of species in human-modified habitats. We use data collected worldwide to analyse what is the fraction of bird and plant species that remain in different human-modified habitats at the local scale after full habitat conversion. We observe that both taxa have consistent responses to the different land-use types, with strongest reductions in species richness in cropland across the globe, and in pasture in the tropics. We show that the results from these studies cannot be linearly scaled from plots to large regions, as this again overestimates the impacts of land-use change on biodiversity. The countryside SAR provides a unifying framework to incorporate both the effect of species persistence in the landscape matrix and the non-linear response of the proportion of species extinctions to sampling area, generating more realistic projections of biodiversity loss.

SUBMITTER: Martins IS 

PROVIDER: S-EPMC5635007 | biostudies-other | 2017 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

Improving extinction projections across scales and habitats using the countryside species-area relationship.

Martins Inês Santos IS   Pereira Henrique Miguel HM  

Scientific reports 20171010 1


The species-area relationship (SAR) has been often used to project species extinctions as a consequence of habitat loss. However, recent studies have suggested that the SAR may overestimate species extinctions, at least in the short-term. We argue that the main reason for this overestimation is that the classic SAR ignores the persistence of species in human-modified habitats. We use data collected worldwide to analyse what is the fraction of bird and plant species that remain in different human  ...[more]