Unknown

Dataset Information

0

Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions.


ABSTRACT: Microsecond pulsed electric fields (?sPEF) permeabilize the plasma membrane (PM) and are widely used in research, medicine and biotechnology. For internal membranes permeabilization, nanosecond pulsed electric fields (nsPEF) are applied but this technology is complex to use. Here we report that the endoplasmic reticulum (ER) membrane can also be electropermeabilized by one 100 µs pulse without affecting the cell viability. Indeed, using Ca2+ as a permeabilization marker, we observed cytosolic Ca2+ peaks in two different cell types after one 100 µs pulse in a medium without Ca2+. Thapsigargin abolished these Ca2+ peaks demonstrating that the calcium is released from the ER. Moreover, IP3R and RyR inhibitors did not modify these peaks showing that they are due to the electropermeabilization of the ER membrane and not to ER Ca2+ channels activation. Finally, the comparison of the two cell types suggests that the PM and the ER permeabilization thresholds are affected by the sizes of the cell and the ER. In conclusion, this study demonstrates that µsPEF, which are easier to control than nsPEF, can permeabilize internal membranes. Besides, ?sPEF interaction with either the PM or ER, can be an efficient tool to modulate the cytosolic calcium concentration and study Ca2+ roles in cell physiology.

SUBMITTER: Hanna H 

PROVIDER: S-EPMC5638809 | biostudies-other | 2017 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions.

Hanna Hanna H   Denzi Agnese A   Liberti Micaela M   André Franck M FM   Mir Lluis M LM  

Scientific reports 20171012 1


Microsecond pulsed electric fields (μsPEF) permeabilize the plasma membrane (PM) and are widely used in research, medicine and biotechnology. For internal membranes permeabilization, nanosecond pulsed electric fields (nsPEF) are applied but this technology is complex to use. Here we report that the endoplasmic reticulum (ER) membrane can also be electropermeabilized by one 100 µs pulse without affecting the cell viability. Indeed, using Ca<sup>2+</sup> as a permeabilization marker, we observed c  ...[more]

Similar Datasets

2023-11-30 | GSE214387 | GEO
2024-03-06 | GSE248601 | GEO
2024-03-06 | GSE248599 | GEO
2024-03-06 | GSE248600 | GEO
2006-02-01 | GSE4106 | GEO
| S-EPMC4415577 | biostudies-other
2022-03-31 | GSE195506 | GEO
| S-EPMC8126200 | biostudies-literature
| S-EPMC10249097 | biostudies-literature
| S-EPMC4428072 | biostudies-literature