Unknown

Dataset Information

0

In Silico Characterization and Functional Validation of Cell Wall Modification Genes Imparting Waterlogging Tolerance in Maize.


ABSTRACT: Cell wall modification (CWM) promotes the formation of aerenchyma in roots under waterlogging conditions as an adaptive mechanism. Lysigenous aerenchyma formation in roots improves oxygen transfer in plants, which highlights the importance of CWM as a focal point in waterlogging stress tolerance. We investigated the structural and functional compositions of CWM genes and their expression patterns under waterlogging conditions in maize. Cell wall modification genes were identified for 3 known waterlogging-responsive cis-acting regulatory elements, namely, GC motif, anaerobic response elements, and G-box, and 2 unnamed elements. Structural motifs mapped in CWM genes were represented in genes regulating waterlogging stress-tolerant pathways, including fermentation, glycolysis, programmed cell death, and reactive oxygen species signaling. The highly aligned regions of characterized and uncharacterized CWM proteins revealed common structural domains amongst them. Membrane spanning regions present in the protein structures revealed transmembrane activity of CWM proteins in the plant cell wall. Cell wall modification proteins had interacted with ethylene-responsive pathway regulating genes (E3 ubiquitin ligases RNG finger and F-box) in a maize protein-protein interaction network. Cell wall modification genes had also coexpressed with energy metabolism, programmed cell death, and reactive oxygen species signaling, regulating genes in a single coexpression cluster. These configurations of CWM genes can be used to modify the protein expression in maize under waterlogging stress condition. Our study established the importance of CWM genes in waterlogging tolerance, and these genes can be used as candidates in introgression breeding and genome editing experiments to impart tolerance in maize hybrids.

SUBMITTER: Arora K 

PROVIDER: S-EPMC5753887 | biostudies-other | 2017

REPOSITORIES: biostudies-other

altmetric image

Publications

In Silico Characterization and Functional Validation of Cell Wall Modification Genes Imparting Waterlogging Tolerance in Maize.

Arora Kanika K   Panda Kusuma Kumari KK   Mittal Shikha S   Mallikarjuna Mallana Gowdra MG   Thirunavukkarasu Nepolean N  

Bioinformatics and biology insights 20171219


Cell wall modification (CWM) promotes the formation of aerenchyma in roots under waterlogging conditions as an adaptive mechanism. Lysigenous aerenchyma formation in roots improves oxygen transfer in plants, which highlights the importance of CWM as a focal point in waterlogging stress tolerance. We investigated the structural and functional compositions of CWM genes and their expression patterns under waterlogging conditions in maize. Cell wall modification genes were identified for 3 known wat  ...[more]

Similar Datasets

| S-EPMC6637594 | biostudies-literature
| S-EPMC5859185 | biostudies-literature
| S-EPMC3278423 | biostudies-literature
2021-03-05 | GSE14660 | GEO
| S-EPMC5454542 | biostudies-literature
| S-EPMC7062413 | biostudies-literature
| S-EPMC3634709 | biostudies-literature
2018-04-03 | GSE110127 | GEO
| S-EPMC4863071 | biostudies-literature
| S-EPMC5703496 | biostudies-literature