Evaluation of a microfluidic flow assay to screen for von Willebrand disease and low von Willebrand factor levels.
Ontology highlight
ABSTRACT: Essentials von Willebrand factor (VWF) function is shear stress dependent. Platelet accumulation in a microfluidic assay correlates with VWF levels. The microfluidic assay discriminates type 1 von Willebrand disease from healthy controls. The microfluidic flow assay detects responses to therapeutic intervention (DDAVP).Background von Willebrand disease (VWD) is a mucocutaneous bleeding disorder with a reported prevalence of 1 in 10 000. von Willebrand factor (VWF) function and platelet adhesion are regulated by hemodynamic forces that are not integrated into most current clinical assays. Objective We evaluated whether a custom microfluidic flow assay (MFA) can screen for deficiencies in VWF in patients presenting with mucocutaneous bleeding. Methods Whole blood from individuals with mucocutaneous bleeding was assayed in a custom MFA. Results Thirty-two patients with type 1 VWD (10/32) or reported mucocutaneous bleeding were enrolled. The platelet adhesion velocity (r = 0.5978 for 750 s-1 and 0.6895 for 1500 s-1 ) and the maximum platelet surface area coverage (r = 0.5719 for 750 s-1 and 0.6633 for 1500 s-1 ) in the MFA correlated with VWF levels. Furthermore, the platelet adhesion velocity at 750 s-1 (type 1 VWD, mean 0.0009761, 95% confidence interval [CI] 0.0003404-0.001612; control, mean 0.003587, 95% CI 0.002455-0.004719) and at 1500 s-1 (type 1 VWD, mean 0.0003585, 95% CI 0.00003914-0.0006778; control, mean 0.003132, 95% CI 0.001565-0.004699) differentiated type 1 VWD from controls. Maximum platelet surface area coverage at 750 s-1 (type 1 VWD, mean 0.1831, 95% CI 0.03816-0.3281; control, mean 0.6755, 95% CI 0.471-0.88) and at 1500 s-1 (type 1 VWD, mean 0.07873, 95% CI 0.01689-0.1406; control, mean 0.6432, 95% CI 0.3607-0.9257) also differentiated type 1 VWD from controls. We also observed an improvement in platelet accumulation after 1-desamino-8-d-arginine vasopressin (DDAVP) treatment at 1500 s-1 (pre-DDAVP, mean 0.4784, 95% CI 0.1777-0.7791; post-DDAVP, mean 0.8444, 95% CI 0.7162-0.9726). Conclusions These data suggest that this approach can be used as a screening tool for VWD.
Journal of thrombosis and haemostasis : JTH 20171123 1
Essentials von Willebrand factor (VWF) function is shear stress dependent. Platelet accumulation in a microfluidic assay correlates with VWF levels. The microfluidic assay discriminates type 1 von Willebrand disease from healthy controls. The microfluidic flow assay detects responses to therapeutic intervention (DDAVP).<h4>Summary</h4>Background von Willebrand disease (VWD) is a mucocutaneous bleeding disorder with a reported prevalence of 1 in 10 000. von Willebrand factor (VWF) function and pl ...[more]
Project description:Gynecological bleeding is frequently reported in women with von Willebrand disease (VWD). Low von Willebrand factor (VWF) may be associated with significant bleeding phenotype despite only mild plasma VWF reductions. The contribution of gynecological bleeding to this phenotype has yet to be described. The optimal clinical bleeding assessment tool (BAT) to evaluate bleeding remains unclear. Using a standardized approach to phenotypic assessment, we evaluated gynecological bleeding and directly compared the Condensed Molecular and Clinical Markers for the Diagnosis and Management of type 1 VWD (Condensed MCMDM-1 VWD) and International Society on Thrombosis and Haemostasis (ISTH) BAT scores in 120 women enrolled in the Low von Willebrand in Ireland Cohort study. Heavy menstrual bleeding (HMB) was reported in 89% of female participants; 45.8% developed iron deficiency. Using identical data, Condensed MCMDM-1 VWD menorrhagia domain scores were significantly lower than ISTH BAT scores (2 vs 3; P < .0001), the discrepant results related to 40% of women not seeking medical consultation for HMB, reducing the sensitivity of the Condensed score. For those who reported HMB to physicians, the low VWF diagnosis was not expedited (age at diagnosis 34.2 vs 33.4 years in women failing to present; P = .7). Postpartum hemorrhage (PPH) was self-reported in 63.5% of parous women (n = 74); 21.6% required transfusion, critical care, radiological, or surgical intervention. Our data demonstrate that gynecological bleeding is frequently reported in women with low VWF; despite pregnancy-related increases in plasma VWF levels, these women may experience PPH. Defining the optimal management approach for these patients requires further research. This trial was registered at www.clinicaltrials.gov as #NCT03167320.
Project description:Backgroundvon Willebrand factor (VWF) variant c.2771G>A; p.R924Q has been described as a benign polymorphism or a possible marker for a null allele and been associated with mild bleeding phenotypes. It was identified in several patients in recent type 1 von Willebrand disease (VWD) studies.ObjectivesTo determine whether the p.R924Q allele contributes to reduced VWF levels and type 1 VWD.MethodsOne thousand one hundred and fifteen healthy controls and 148 index cases from the MCMDM-1VWD study were genotyped for c.2771G>A; VWF and FVIII levels were analyzed in ABO blood group stratified individuals and the p.R924Q variant was expressed in 293 EBNA cells.Resultsc.2771G>A was present in six index cases, five of whom had a second VWF variant which probably contributed to the phenotype. A common core haplotype identified in families, which included the rare G allele of c.5843-8C>G, was present in the majority of 35 c.2771G>A heterozygous controls. c.2771G>A contributed about 10% variance in VWF and FVIII levels in controls and 35% variance when co-inherited with blood group O. Recombinant p.R924Q VWF had no effect on in vitro expression and heterozygous family members had normal VWF-FVIII binding and normal clearance of VWF and FVIII.ConclusionsThe allele bearing c.2771A leads to reductions in VWF and FVIII levels particularly in combination with blood group O. Its inheritance alone may be insufficient for VWD diagnosis, but it appears to be associated with a further VWF level reduction in individuals with a second VWF mutation and it contributes to population variance in VWF and FVIII levels.
Project description:Low von Willebrand factor (VWF) levels are associated with bleeding symptoms and are a diagnostic criterion for von Willebrand disease, the most common inherited bleeding disorder. To date, it is unclear which genetic loci are associated with reduced VWF levels. Therefore, we conducted a meta-analysis of genome-wide association studies to identify genetic loci associated with low VWF levels. For this meta-analysis, we included 31?149 participants of European ancestry from 11 community-based studies. From all participants, VWF antigen (VWF:Ag) measurements and genome-wide single-nucleotide polymorphism (SNP) scans were available. Each study conducted analyses using logistic regression of SNPs on dichotomized VWF:Ag measures (lowest 5% for blood group O and non-O) with an additive genetic model adjusted for age and sex. An inverse-variance weighted meta-analysis was performed for VWF:Ag levels. A total of 97 SNPs exceeded the genome-wide significance threshold of 5 × 10(-8) and comprised five loci on four different chromosomes: 6q24 (smallest P-value 5.8 × 10(-10)), 9q34 (2.4 × 10(-64)), 12p13 (5.3 × 10(-22)), 12q23 (1.2 × 10(-8)) and 13q13 (2.6 × 10(-8)). All loci were within or close to genes, including STXBP5 (Syntaxin Binding Protein 5) (6q24), STAB5 (stabilin-5) (12q23), ABO (9q34), VWF (12p13) and UFM1 (ubiquitin-fold modifier 1) (13q13). Of these, UFM1 has not been previously associated with VWF:Ag levels. Four genes that were previously associated with VWF levels (VWF, ABO, STXBP5 and STAB2) were also associated with low VWF levels, and, in addition, we identified a new gene, UFM1, that is associated with low VWF levels. These findings point to novel mechanisms for the occurrence of low VWF levels.
Project description:The globular-to-unraveled conformation transition of von Willebrand factor (vWF), a large polymeric glycoprotein in human blood plasma, is a crucial step in the process of clotting at sites of vascular injury. However, unraveling of vWF multimers in uninjured vasculature can lead to pathology (i.e., thrombus formation or degradation of vWF proteins by enzyme ADAMTS13, making them nonfunctional). To identify blood flow conditions that might induce pathological unraveling of vWF multimers, here we have computed the globular-to-unraveled transition rate of vWF multimers subjected to varying strain rate elongational flow by employing an enhanced sampling technique, the weighted ensemble method. Weighted ensemble sampling was employed instead of standard brute-force simulations because pathological blood flow conditions can induce undesired vWF unraveling on timescales potentially inaccessible to standard simulation methods. Results here indicate that brief but periodic exposure of vWF to the elongational flow of strain rate greater than or equal to 2500 s-1 represents a source of possible pathology caused by the undesired unraveling of vWF multimers.
Project description:BackgroundAntibodies inhibiting von Willebrand factor (VWF) develop in a subset of patients with type 3 von Willebrand disease (VWD3) and may be detected by their inhibition of ristocetin cofactor activity (VWF:RCo). Some also inhibit factor VIII activity (VIII:C).AimTo describe monitoring of ten VWD3 patients for VWF inhibitors using a quantitative assay.MethodsVWF inhibitor was measured by comparing VWF:RCo activity of a mix of patient and pooled normal plasma (PNP) with a mix of buffer and PNP, using agglutination of fixed normal platelets in microtiter plates or lyophilized platelets in an aggregometer. VIII:C inhibitor was measured by Bethesda assay. Preanalytical heat treatment of patient plasma was used during treatment episodes.ResultsFour of 10 patients monitored developed VWF inhibitors, two detected during bleeding episodes refractory to treatment and two on routine screening. Data from the first five patients were used to establish an arbitrary unit, VWU, defined as the amount of inhibitor per millilitre of patient plasma inactivating 25% of the activity of 1 mL of PNP. In three of four patients, both VWF:RCo and VIIII:C were inhibited at some time points, although VIII:C inhibition sometimes disappeared. In one patient, no VIII:C inhibition was seen. Two patients remained inhibitor positive more than 15 years after inhibitor detection, one became negative following immune tolerance induction, and one was deceased.ConclusionsVWF inhibitors can be quantitatively monitored in VWD3 patients. Preanalytical heat treatment may be required for their detection post infusion.
Project description:von Willebrand disease (VWD) is associated with significant morbidity as a result of excessive mucocutaneous bleeding. Early diagnosis and treatment are important to prevent and treat these symptoms. We systematically reviewed the accuracy of diagnostic tests using different cutoff values of von Willebrand factor antigen (VWF:Ag) and platelet-dependent von Willebrand factor (VWF) activity assays in the diagnosis of VWD. We searched Cochrane Central Register for Controlled Trials, MEDLINE, and Embase databases for eligible studies. We pooled estimates of sensitivity and specificity and reported patient-important outcomes when relevant. This review included 21 studies that evaluated VWD diagnosis. The results showed low certainty in the evidence for a net health benefit from reconsidering the diagnosis of VWD vs removing the disease diagnosis in patients with VWF levels that have normalized with age. For the diagnosis of type 1 VWD, VWF sequence variants were detected in 75% to 82% of patients with VWF:Ag < 0.30 IU/mL and in 44% to 60% of patients with VWF:Ag between 0.30 and 0.50 IU/mL. A sensitivity of 0.90 (95% confidence interval [CI], 0.83-0.94) and a specificity of 0.91 (95% CI, 0.76-0.97) were observed for a platelet-dependent VWF activity/VWF:Ag ratio < 0.7 in detecting type 2 VWD (moderate certainty in the test accuracy results). VWF:Ag and platelet-dependent activity are continuous variables that are associated with an increase in bleeding risk with decreasing levels. This systematic review shows that using a VWF activity/VWF:Ag ratio < 0.7 vs lower cutoff levels in patients with an abnormal initial VWD screen is more accurate for the diagnosis of type 2 VWD.
Project description:The unfolding of von Willebrand Factor (vWF), one of the largest multimeric proteins in our body, has been shown to be a crucial step in the process of blood clotting. Here we show that elongational flows, which appear during vasoconstriction or stenosis, are the primary activation mechanisms of vWF, and unfold the multimeric protein at flow rates that are two orders-of -magnitude below those corresponding to pure shear. The findings presented here complement the current understanding of blood clotting from the molecular to the physiological level, and provide new physical insights into the connection between clotting anomalies, such as Heyde's syndrome and stenosis. These findings also represent a new paradigm in the function and activation of vWF.
Project description:UnlabelledEssentials Variants at ABO, von Willebrand Factor (VWF) and 2q12 contribute to the variation in plasma in VWF. We performed a genome-wide association study of plasma VWF propeptide in 3,238 individuals. ABO, VWF and 2q12 loci had weak or no association or linkage with plasma VWFpp levels. VWF associated variants at ABO, VWF and 2q12 loci primarily affect VWF clearance rates.SummaryBackground Previous studies identified common variants at the ABO and VWF loci and unknown variants in a chromosome 2q12 linkage interval that contributed to the variation in plasma von Willebrand factor (VWF) levels. Whereas the association with ABO haplotypes can be explained by differential VWF clearance, little is known about the mechanisms underlying the association with VWF single-nucleotide polymorphisms (SNPs) or with variants in the chromosome 2 linkage interval. VWF propeptide (VWFpp) and mature VWF are encoded by the VWF gene and secreted at the same rate, but have different plasma half-lives. Therefore, comparison of VWFpp and VWF association signals can be used to assess whether the variants are primarily affecting synthesis/secretion or clearance. Methods We measured plasma VWFpp levels and performed genome-wide linkage and association studies in 3238 young and healthy individuals for whom VWF levels had been analyzed previously. Results and conclusions Common variants in an intergenic region on chromosome 7q11 were associated with VWFpp levels. We found that ABO serotype-specific SNPs were associated with VWFpp levels in the same direction as for VWF, but with a much lower effect size. Neither the association at VWF nor the linkage on chromosome 2 previously reported for VWF was observed for VWFpp. Taken together, these results suggest that the major genetic factors affecting plasma VWF levels, i.e. variants at ABO, VWF and a locus on chromosome 2, operate primarily through their effects on VWF clearance.
Project description:Streptococcus pneumoniae is a major cause of community acquired pneumonia and septicaemia in humans. These diseases are frequently associated with thromboembolic cardiovascular complications. Pneumococci induce the exocytosis of endothelial Weibel-Palade Bodies and thereby actively stimulate the release of von Willebrand factor (VWF), which is an essential glycoprotein of the vascular hemostasis. Both, the pneumococcus induced pulmonary inflammation and the thromboembolytic complications are characterized by a dysbalanced hemostasis including a marked increase in VWF plasma concentrations. Here, we describe for the first time VWF as a novel interaction partner of capsulated and non-encapsulated pneumococci. Moreover, cell culture infection analyses with primary endothelial cells characterized VWF as bridging molecule that mediates bacterial adherence to endothelial cells in a heparin-sensitive manner. Due to the mechanoresponsive changes of the VWF protein conformation and multimerization status, which occur in the blood stream, we used a microfluidic pump system to generate shear flow-induced multimeric VWF strings on endothelial cell surfaces and analyzed attachment of RFP-expressing pneumococci in flow. By applying immunofluorescence visualization and additional electron microscopy, we detected a frequent and enduring bacterial attachment to the VWF strings. Bacterial attachment to the endothelium was confirmed in vivo using a zebrafish infection model, which is described in many reports and acknowledged as suitable model to study hemostasis mechanisms and protein interactions of coagulation factors. Notably, we visualized the recruitment of zebrafish-derived VWF to the surface of pneumococci circulating in the blood stream and detected a VWF-dependent formation of bacterial aggregates within the vasculature of infected zebrafish larvae. Furthermore, we identified the surface-exposed bacterial enolase as pneumococcal VWF binding protein, which interacts with the VWF domain A1 and determined the binding kinetics by surface plasmon resonance. Subsequent epitope mapping using an enolase peptide array indicates that the peptide 181YGAEIFHALKKILKS195 might serve as a possible core sequence of the VWF interaction site. In conclusion, we describe a VWF-mediated mechanism for pneumococcal anchoring within the bloodstream via surface-displayed enolase, which promotes intravascular bacterial aggregation.