ABSTRACT: The recent revolution in science and technology applied to medical research has left in its wake a trial of biomedical data and human samples; however, its opportunities remain largely unfulfilled due to a number of legal, ethical, financial, strategic, and technical barriers. Precision oncology has been at the vanguard to leverage this potential of "Big data" and samples into meaningful solutions for patients, considering the need for new drug development approaches in this area (due to high costs, late-stage failures, and the molecular diversity of cancer). To harness the potential of the vast quantities of data and samples currently fragmented across databases and biobanks, it is critical to engage all stakeholders and share data and samples across research institutes. Here, we identified two general types of sharing strategies. First, open access models, characterized by the absence of any review panel or decision maker, and second controlled access model where some form of control is exercised by either the donor (i.e., patient), the data provider (i.e., initial organization), or an independent party. Further, we theoretically describe and provide examples of nine different strategies focused on greater sharing of patient data and material. These models provide varying levels of control, access to various data and/or samples, and different types of relationship between the donor, data provider, and data requester. We propose a tiered model to share clinical data and samples that takes into account privacy issues and respects sponsors' legitimate interests. Its implementation would contribute to maximize the value of existing datasets, enabling unraveling the complexity of tumor biology, identify novel biomarkers, and re-direct treatment strategies better, ultimately to help patients with cancer.