Sacral neuromodulation blocks pudendal inhibition of reflex bladder activity in cats: insight into the efficacy of sacral neuromodulation in Fowler's syndrome.
Ontology highlight
ABSTRACT: This study tested the hypothesis that sacral neuromodulation, i.e., electrical stimulation of afferent axons in sacral spinal root, can block pudendal afferent inhibition of the micturition reflex. In ?-chloralose-anesthetized cats, pudendal nerve stimulation (PNS) at 3-5 Hz was used to inhibit bladder reflex activity while the sacral S1 or S2 dorsal root was stimulated at 15-30 Hz to mimic sacral neuromodulation and to block the bladder inhibition induced by PNS. The intensity threshold (T) for PNS or S1/S2 dorsal root stimulation (DRS) to induce muscle twitch of anal sphincter or toe was determined. PNS at 1.5-2T intensity inhibited the micturition reflex by significantly ( P < 0.01) increasing bladder capacity to 150-170% of control capacity. S1 DRS alone at 1-1.5T intensity did not inhibit bladder activity but completely blocked PNS inhibition and restored bladder capacity to control level. At higher intensity (1.5-2T), S1 DRS alone inhibited the micturition reflex and significantly increased bladder capacity to 135.8?±?6.6% of control capacity. However, the same higher intensity S1 DRS applied simultaneously with PNS, suppressed PNS inhibition and significantly ( P < 0.01) reduced bladder capacity to 126.8 ± 9.7% of control capacity. S2 DRS at both low (1T) and high (1.5-2T) intensity failed to significantly reduce PNS inhibition. PNS and S1 DRS did not change the amplitude and duration of micturition reflex contractions, but S2 DRS at 1.5-2T intensity doubled the duration of the contractions and increased bladder capacity. These results are important for understanding the mechanisms underlying sacral neuromodulation of nonobstructive urinary retention in Fowler's syndrome.
SUBMITTER: Li X
PROVIDER: S-EPMC5866366 | biostudies-other | 2018 Jan
REPOSITORIES: biostudies-other
ACCESS DATA