Unknown

Dataset Information

0

Step length determines minimum toe clearance in older adults and people with Parkinson's disease.


ABSTRACT: Reduced foot clearance when walking may increase the risk of trips and falls in people with Parkinson's disease (PD). Changes in foot clearance in people with PD are likely to be associated with temporal-spatial characteristics of gait such as walking slowly which evokes alterations in the temporal-spatial control of stepping patterns. Enhancing our understanding of the temporal-spatial determinants of foot clearance may inform the design of falls prevention therapies. Thirty-six people with PD and 38 age-matched controls completed four intermittent walks under two conditions: self-selected and fast gait velocity. Temporal-spatial characteristics of gait and foot (heel and toe) clearance outcomes were obtained using an instrumented walkway and 3D motion capture, respectively. A general linear model was used to quantify the effect of PD and gait velocity on gait and foot clearance. Regression evaluated the temporal and spatial gait predictors of minimum toe clearance (MTC). PD walked slower regardless of condition (p?=?.016) and tended to increase their step length to achieve a faster gait velocity. Step length and the walk ratio consistently explained the greatest proportion of variance in MTC (>28% and >33%, respectively) regardless of group or walking condition (p?

SUBMITTER: Alcock L 

PROVIDER: S-EPMC5887869 | biostudies-other | 2018 Apr

REPOSITORIES: biostudies-other

altmetric image

Publications

Step length determines minimum toe clearance in older adults and people with Parkinson's disease.

Alcock Lisa L   Galna Brook B   Perkins Ruth R   Lord Sue S   Rochester Lynn L  

Journal of biomechanics 20171213


Reduced foot clearance when walking may increase the risk of trips and falls in people with Parkinson's disease (PD). Changes in foot clearance in people with PD are likely to be associated with temporal-spatial characteristics of gait such as walking slowly which evokes alterations in the temporal-spatial control of stepping patterns. Enhancing our understanding of the temporal-spatial determinants of foot clearance may inform the design of falls prevention therapies. Thirty-six people with PD  ...[more]

Similar Datasets

| S-EPMC5432520 | biostudies-literature
| S-EPMC5375113 | biostudies-literature
| S-EPMC8726470 | biostudies-literature
| S-EPMC6561532 | biostudies-literature
| S-EPMC6486470 | biostudies-literature
| S-EPMC7019419 | biostudies-literature
| S-EPMC7031238 | biostudies-literature
| S-EPMC5778902 | biostudies-literature
| S-EPMC8775546 | biostudies-literature
| S-EPMC6448561 | biostudies-literature