Endothelial Cell Phenotypes are Maintained During Angiogenesis in Cultured Microvascular Networks.
Ontology highlight
ABSTRACT: A challenge in tissue engineering biomimetic models for studying angiogenesis is building the physiological complexity of real microvascular networks. Our laboratory recently introduced the rat mesentery culture model as an ex vivo experimental platform for investigating multicellular dynamics involved in angiogenesis within intact microvascular networks. The objective of this study was to compare endothelial cell phenotypes along capillary sprouts in cultured ex vivo rat mesentery microvascular networks to in vivo endothelial cell phenotypes. For Day 3 (Ex Vivo) tissues, adult rat mesentery tissues were cultured for three days in media supplemented with 10% serum. For Day 3 (In Vivo) tissues, adult rats were anesthetized and the mesentery was exteriorized for twenty minutes to induce angiogenesis. Microvascular networks from Day 3 (Ex Vivo) and Day 3 (In Vivo) groups were angiogenic, characterized by an increase in vessel density, capillary sprouting, and identification of similar BrdU-positive endothelial cell distributions along sprouts. Endothelial cells in both groups extended pseudopodia at the distal edge of capillary sprouts and displayed similar endothelial cell UNC5b, VEGFR-2, and CD36 labeling patterns. The results from this study support the physiological relevance of the rat mesentery culture model and highlight its novelty as a biomimetic tool for angiogenesis research.
SUBMITTER: Motherwell JM
PROVIDER: S-EPMC5897326 | biostudies-other | 2018 Apr
REPOSITORIES: biostudies-other
ACCESS DATA