Unknown

Dataset Information

0

Spin-dependent magneto-thermopower of narrow-gap lead chalcogenide quantum wells.


ABSTRACT: A semi-classical analysis of magneto-thermopower behaviour, namely, the Seebeck and Nernst effect (NE) in quantum wells of IV-VI lead salts with significant extrinsic Rashba spin-orbit coupling (RSOC) is performed in this report. In addition to the spin-dependent Seebeck effect that has been observed before, we also theoretically predict a similar spin-delineated behavior for its magneto-thermal analog, the spin-dependent NE. The choice of lead salts follows from a two-fold advantage they offer, in part, to their superior thermoelectric properties, especially PbTe, while their low band gaps and high spin-orbit coupling make them ideal candidates to study RSOC governed effects in nanostructures. The calculations show a larger longitudinal magneto-thermopower for the spin-up electrons while the transverse components are nearly identical. In contrast, for a magnetic field free case, the related power factor calculations reveal a significantly higher contribution from the spin-down ensemble and suffer a reduction with an increase in the electron density. We also discuss qualitatively the limitations of the semi-classical approach for the extreme case of a high magnetic field and allude to the observed thermopower behaviour when the quantum Hall regime is operational. Finally, techniques to modulate the thermopower are briefly outlined.

SUBMITTER: Sengupta P 

PROVIDER: S-EPMC5899174 | biostudies-other | 2018 Apr

REPOSITORIES: biostudies-other

altmetric image

Publications

Spin-dependent magneto-thermopower of narrow-gap lead chalcogenide quantum wells.

Sengupta Parijat P   Wen Yu Y   Shi Junxia J  

Scientific reports 20180413 1


A semi-classical analysis of magneto-thermopower behaviour, namely, the Seebeck and Nernst effect (NE) in quantum wells of IV-VI lead salts with significant extrinsic Rashba spin-orbit coupling (RSOC) is performed in this report. In addition to the spin-dependent Seebeck effect that has been observed before, we also theoretically predict a similar spin-delineated behavior for its magneto-thermal analog, the spin-dependent NE. The choice of lead salts follows from a two-fold advantage they offer,  ...[more]

Similar Datasets

| S-EPMC5789084 | biostudies-literature
| S-EPMC5253649 | biostudies-literature
| S-EPMC6898666 | biostudies-literature
| S-EPMC5943254 | biostudies-literature
| S-EPMC5962594 | biostudies-literature
| S-EPMC7782751 | biostudies-literature
| S-EPMC3791469 | biostudies-other
| S-EPMC5968429 | biostudies-literature
| S-EPMC4521157 | biostudies-other
| S-EPMC5333099 | biostudies-literature