Unknown

Dataset Information

0

Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors.


ABSTRACT: Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (?80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indications of heterogeneous response rates of <20% to anti-PD1 and anti-PDL1 ICB. While promising, these modest response rates highlight the need for mechanistic studies to understand how different ICBs function, how their combination impacts functionality and efficacy, as well as what immunologic parameters predict efficacy to different ICBs regimens in TNBC. To address these issues, we tested anti-PD1 and anti-CTLA4 in multiple models of TNBC and found that their combination profoundly enhanced the efficacy of either treatment alone. We demonstrate that this efficacy is due to anti-CTLA4-driven expansion of an individually unique T-cell receptor (TCR) repertoire whose functionality is enhanced by both intratumoral Treg suppression and anti-PD1 blockade of tumor expressed PDL1. Notably, the individuality of the TCR repertoire was observed regardless of whether the tumor cells expressed a nonself antigen (ovalbumin) or if tumor-specific transgenic T-cells were transferred prior to sequencing. However, responsiveness was strongly correlated with systemic measures of tumor-specific T-cell and B-cell responses, which along with systemic assessment of TCR expansion, may serve as the most useful predictors for clinical responsiveness in future clinical trials of TNBC utilizing anti-PD1/anti-CTLA4 ICB.

SUBMITTER: Crosby EJ 

PROVIDER: S-EPMC5927534 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors.

Crosby Erika J EJ   Wei Junping J   Yang Xiao Yi XY   Lei Gangjun G   Wang Tao T   Liu Cong-Xiao CX   Agarwal Pankaj P   Korman Alan J AJ   Morse Michael A MA   Gouin Kenneth K   Knott Simon R V SRV   Lyerly H Kim HK   Hartman Zachary C ZC  

Oncoimmunology 20180119 5


Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (∼80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indicati  ...[more]

Similar Datasets

| S-EPMC4401634 | biostudies-literature
| S-EPMC6284388 | biostudies-literature
| S-EPMC6136876 | biostudies-literature
| S-EPMC9613699 | biostudies-literature
| S-SCDT-88789_2_1540197428_jats | biostudies-other
| S-EPMC5414554 | biostudies-literature
| S-EPMC6508770 | biostudies-literature
| S-EPMC6063761 | biostudies-literature
| S-EPMC5621898 | biostudies-literature
| S-EPMC7487859 | biostudies-literature