Unknown

Dataset Information

0

Brown adipose tissue plays a central role in systemic inflammation-induced sleep responses.


ABSTRACT: We previously identified brown adipose tissue (BAT) as a source of sleep-inducing signals. Pharmacological activation of BAT enhances sleep while sleep loss leads to increased BAT thermogenesis. Recovery sleep after sleep loss is diminished in mice that lack uncoupling protein 1 (UCP-1), and also in wild-type (WT) mice after sensory denervation of the BAT. Systemic inflammation greatly affects metabolism and the function of adipose tissue, and also induces characteristic sleep responses. We hypothesized that sleep responses to acute inflammation are mediated by BAT-derived signals. To test this, we determined the effects of systemic inflammation on sleep and body temperature in UCP-1 knockout (KO) and WT mice. Intraperitoneal injections of lipopolysaccharide, tumor necrosis factor-?, interleukin-1 beta and clodronate containing liposomes were used to induce systemic inflammation. In WT animals, non-rapid-eye movement sleep (NREMS) was elevated in all four inflammatory models. All NREMS responses were completely abolished in UCP-1 KO animals. Systemic inflammation elicited an initial hypothermia followed by fever in WT mice. The hypothermic phase, but not the fever, was abolished in UCP-1 KO mice. The only recognized function of UCP-1 is to promote thermogenesis in brown adipocytes. Present results indicate that the presence of UCP-1 is necessary for increased NREMS but does not contribute to the development of fever in systemic inflammation.

SUBMITTER: Szentirmai E 

PROVIDER: S-EPMC5945014 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

Brown adipose tissue plays a central role in systemic inflammation-induced sleep responses.

Szentirmai Éva É   Kapás Levente L  

PloS one 20180510 5


We previously identified brown adipose tissue (BAT) as a source of sleep-inducing signals. Pharmacological activation of BAT enhances sleep while sleep loss leads to increased BAT thermogenesis. Recovery sleep after sleep loss is diminished in mice that lack uncoupling protein 1 (UCP-1), and also in wild-type (WT) mice after sensory denervation of the BAT. Systemic inflammation greatly affects metabolism and the function of adipose tissue, and also induces characteristic sleep responses. We hypo  ...[more]

Similar Datasets

| S-EPMC5928436 | biostudies-literature
| S-EPMC7600394 | biostudies-literature
| S-EPMC5414566 | biostudies-literature
| S-EPMC4173995 | biostudies-literature
| S-EPMC5064361 | biostudies-literature
| S-EPMC3383997 | biostudies-literature
| S-EPMC6235278 | biostudies-literature
| S-EPMC8128440 | biostudies-literature
| S-EPMC9218513 | biostudies-literature
| S-EPMC5157157 | biostudies-literature