Unknown

Dataset Information

0

Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaOx bipolar resistive switching.


ABSTRACT: Recent advances in oxide-based resistive switching devices have made these devices very promising candidates for future nonvolatile memory applications. However, several key issues remain that affect resistive switching. One is the need for generic alternative electrodes with thermally robust resistive switching characteristics in as-grown and high-temperature annealed states. Here, we studied the electrical characteristics of Ta2O5-x oxide-based bipolar resistive frames for various TaNx bottoms. Control of the nitrogen content of the TaNx electrode is a key factor that governs variations in its oxygen affinity and structural phase. We analyzed the composition and chemical bonding states of as-grown and annealed Ta2O5-x and TaNx layers and characterized the TaNx electrode-dependent switching behavior in terms of the electrode's oxygen affinity. Our experimental findings can aid the development of advanced resistive switching devices with thermal stability up to 400?°C.

SUBMITTER: Kim T 

PROVIDER: S-EPMC5986858 | biostudies-other | 2018 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaO<sub>x</sub> bipolar resistive switching.

Kim Taeyoon T   Baek Gwangho G   Yang Seungmo S   Yang Jung Yup JY   Yoon Kap Soo KS   Kim Soo Gil SG   Lee Jae Yeon JY   Im Hyun Sik HS   Hong Jin Pyo JP  

Scientific reports 20180604 1


Recent advances in oxide-based resistive switching devices have made these devices very promising candidates for future nonvolatile memory applications. However, several key issues remain that affect resistive switching. One is the need for generic alternative electrodes with thermally robust resistive switching characteristics in as-grown and high-temperature annealed states. Here, we studied the electrical characteristics of Ta<sub>2</sub>O<sub>5-x</sub> oxide-based bipolar resistive frames fo  ...[more]

Similar Datasets

| S-EPMC5459000 | biostudies-other
| S-EPMC3625919 | biostudies-literature
| S-EPMC5107888 | biostudies-literature
| S-EPMC8277833 | biostudies-literature
| S-EPMC8874538 | biostudies-literature
| S-EPMC3564723 | biostudies-literature
| S-EPMC7690433 | biostudies-literature
| S-EPMC4686890 | biostudies-literature
| S-EPMC5622061 | biostudies-literature
| S-EPMC5455395 | biostudies-other