Development and validation of a model for the adoption of structured and standardised data recording among healthcare professionals.
Ontology highlight
ABSTRACT: Healthcare professionals provide care to patients and during that process, record large quantities of data in patient records. Data in an Electronic Health Record should ideally be recorded once and be reusable within the care process as well as for secondary purposes. A common approach to realise this is to let healthcare providers record data in a standardised and structured way at the point of care. Currently, it is not clear to what extent this structured and standardised recording has been adopted by healthcare professionals and what barriers to their adoption exist. Therefore, we developed and validated a multivariable model to capture the concepts underlying the adoption of structured and standardised recording among healthcare professionals.Based on separate models from the literature we developed a new theoretical model describing the underlying concepts of the adoption of structured and standardised recording. Using a questionnaire built upon this model we gathered data to perform a summative validation of our model. Validation was done through partial least squares structural equation modelling (PLS-SEM). The quality of both levels defined in PLS-SEM analysis, i.e., the measurement model and the structural model, were assessed on performance measures defined in literature.The theoretical model we developed consists of 29 concepts related to information systems as well as organisational factors and personal beliefs. Based on these concepts, 59 statements with a 5 point Likert-scale (fully disagree to fully agree) were specified in the questionnaire. We received 3584 responses. The validation shows our model is supported to a large extent by the questionnaire data. Intention to record in a structured and standardised way emerged as a significant factor of reported behaviour (??=?0.305, p?
SUBMITTER: Joukes E
PROVIDER: S-EPMC6027789 | biostudies-other | 2018 Jun
REPOSITORIES: biostudies-other
ACCESS DATA