Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry.
Ontology highlight
ABSTRACT: AIM:Lipid mediators (LMs) are broadly defined as a class of bioactive lipophilic molecules that regulate cell-to-cell communication events with many having a strong correlation with various human diseases and conditions. LMs are usually analyzed with LC-MS, but their numerous isomers greatly complicate the measurements with essentially identical fragmentation spectra and LC separations are not always sufficient for distinguishing the features. Results/methodology: In this work, we characterized LMs using ion mobility spectrometry (IMS) coupled with MS (IMS-MS). The collision cross-sections and m/z values from the IMS and MS analyses displayed distinct trend lines. Specifically, the structural trend lines for sodiated LMs originating from docosahexaenoic acid had the smallest collision cross-section values in relation to m/z, while those from linoleic acid had the largest. LC-IMS-MS analyses were also performed on LMs in flu infected mouse tissue samples. These multidimensional studies were able to assess known LMs while also detecting new species. CONCLUSION:Adding IMS separations to conventional LC-MS analyses show great utility for enabling better identification and characterization of LMs in complex biological samples.
SUBMITTER: Kyle JE
PROVIDER: S-EPMC6040087 | biostudies-other | 2018 Mar
REPOSITORIES: biostudies-other
ACCESS DATA