Intracellular membranes of bacterial endospores are reservoirs for spore core membrane expansion during spore germination.
Ontology highlight
ABSTRACT: Bacterial endospores are formed by certain bacteria, such as Bacillus subtilis or the pathogenic Bacillus anthracis and Clostridioides difficile, to allow survival in environmental conditions which are lethal to vegetative bacteria. The spores possess a particular architecture and molecular inventory which endow them with a remarkable resistance against desiccation, heat and radiation. Another remarkable spore feature is their rapid return to vegetative growth during spore germination and outgrowth. The underlying processes of this latter physiological and morphological transformation involve a number of different events, some of which are mechanistically not entirely understood. One of these events is the expansion of the central spore core, which contains the DNA, RNA and most spore enzymes. To date, it has been unclear how the ~1.3- to 1.6-fold expansion of the core membrane surface area that accompanies core expansion takes place, since this occurs in the absence of significant if any ATP synthesis. In the current work, we demonstrate the presence of intracellular membrane structures in spores located just below the core membrane. During spore germination these internal core membranes disappear when the core size increases, suggesting that they are integrated into the core membrane to allow core expansion. These intracellular membranes are most probably present as more or less compressed vesicles or tubules within the dormant spore core. Investigations of spores from different species suggest that these intracellular membrane structures below the core membrane are a general feature of endospore forming bacteria.
SUBMITTER: Laue M
PROVIDER: S-EPMC6065386 | biostudies-other | 2018 Jul
REPOSITORIES: biostudies-other
ACCESS DATA