Unknown

Dataset Information

0

Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells.


ABSTRACT: Spermatogonial stem cells (SSCs) derived from mouse testis are unipotent in regard of spermatogenesis. Our previous study demonstrated that SSCs can be fully reprogrammed into pluripotent stem cells, so called germline-derived pluripotent stem cells (gPS cells), on feeder cells (mouse embryonic fibroblasts), which supports SSC proliferation and induction of pluripotency. Because of an uncontrollable microenvironment caused by interactions with feeder cells, feeder-based SSC reprogramming is not suitable for elucidation of the self-reprogramming mechanism by which SSCs are converted into pluripotent stem cells. Recently, we have established a Matrigel-based SSC expansion culture system that allows long-term SSC proliferation without mouse embryonic fibroblast support. In this study, we developed a new feeder-free SSC self-reprogramming protocol based on the Matrigel-based culture system. The gPS cells generated using a feeder-free reprogramming system showed pluripotency at the molecular and cellular levels. The differentiation potential of gPS cells was confirmed in vitro and in vivo. Our study shows for the first time that the induction of SSC pluripotency can be achieved without feeder cells. The newly developed feeder-free self-reprogramming system could be a useful tool to reveal the mechanism by which unipotent cells are self-reprogrammed into pluripotent stem cells.

SUBMITTER: Lee SW 

PROVIDER: S-EPMC6078851 | biostudies-other | 2018 Jul

REPOSITORIES: biostudies-other

altmetric image

Publications

Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells.

Lee Seung-Won SW   Wu Guangming G   Choi Na Young NY   Lee Hye Jeong HJ   Bang Jin Seok JS   Lee Yukyeong Y   Lee Minseong M   Ko Kisung K   Schöler Hans R HR   Ko Kinarm K  

Molecules and cells 20180710 7


Spermatogonial stem cells (SSCs) derived from mouse testis are unipotent in regard of spermatogenesis. Our previous study demonstrated that SSCs can be fully reprogrammed into pluripotent stem cells, so called germline-derived pluripotent stem cells (gPS cells), on feeder cells (mouse embryonic fibroblasts), which supports SSC proliferation and induction of pluripotency. Because of an uncontrollable microenvironment caused by interactions with feeder cells, feeder-based SSC reprogramming is not  ...[more]

Similar Datasets

| S-EPMC6913676 | biostudies-literature
| S-EPMC10693117 | biostudies-literature
| S-EPMC9432470 | biostudies-literature
| S-EPMC4556992 | biostudies-literature
| S-EPMC5563919 | biostudies-literature
| S-EPMC8282469 | biostudies-literature
| S-EPMC3943225 | biostudies-literature
| S-EPMC3896366 | biostudies-literature
| S-EPMC4086341 | biostudies-other
| S-EPMC3123318 | biostudies-literature