Unknown

Dataset Information

0

Suppression of Harmaline Tremor by Activation of an Extrasynaptic GABAA Receptor: Implications for Essential Tremor.


ABSTRACT: Background:Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABAA receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar extrasynaptic receptors contain α6 and δ subunits, would fail to do so in mice lacking either subunit. Methods:Digitally measured motion power, expressed as 10-16 Hz power (the tremor bandwidth) divided by background 8-32 Hz motion power, was accessed during pre-harmaline baseline, pre-THIP harmaline exposure, and after THIP administration (0, 2, or 3 mg/kg). These low doses were chosen as they did not impair performance on the straight wire test, a sensitive test for psychomotor impairment. Littermate δ wild-type and knockout (Gabrd+/+, Gabrd-/-) and littermate α6 wild-type and knockout (Gabra6+/+, Gabra6-/- ) mice were tested. Results:Gabrd+/+ mice displayed tremor reduction at 3 mg/kg THIP but not 2 mg/kg, and Gabra6+/+ mice showed tremor reduction at 2 and 3 mg/kg. Their respective subunit knockout littermates displayed no tremor reduction compared with vehicle controls at either dose. Discussion:The loss of anti-tremor efficacy with deletion of either δ or α6 GABAA receptor subunits indicates that extrasynaptic receptors containing both subunits, most likely located on cerebellar granule cells where they are highly expressed, mediate tremor suppression by THIP. A medication designed to activate only these receptors may display a favorable profile for treating essential tremor.

SUBMITTER: Handforth A 

PROVIDER: S-EPMC6125735 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

Suppression of Harmaline Tremor by Activation of an Extrasynaptic GABA<sub>A</sub> Receptor: Implications for Essential Tremor.

Handforth Adrian A   Kadam Pournima A PA   Kosoyan Hovsep P HP   Eslami Pirooz P  

Tremor and other hyperkinetic movements (New York, N.Y.) 20180626


<h4>Background</h4>Metabolic imaging has revealed excessive cerebellar activity in essential tremor patients. Golgi cells control cerebellar activity by releasing gamma-aminobutyric acid (GABA) onto synaptic and extrasynaptic receptors on cerebellar granule cells. We postulated that the extrasynaptic GABA<sub>A</sub> receptor-specific agonist THIP (gaboxadol; 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) would suppress tremor in the harmaline model of essential tremor and, since cerebellar ext  ...[more]

Similar Datasets

| S-EPMC5932167 | biostudies-literature
| S-EPMC7218123 | biostudies-literature
| S-EPMC6438731 | biostudies-literature
| S-EPMC3799604 | biostudies-literature
| S-EPMC1578762 | biostudies-literature
| S-EPMC5898616 | biostudies-literature
| S-EPMC4024867 | biostudies-other
| S-EPMC5790790 | biostudies-literature
| S-EPMC3704025 | biostudies-literature
| S-EPMC3889719 | biostudies-literature