Unknown

Dataset Information

0

"Candidatus Nitrosotenuis aquarius," an Ammonia-Oxidizing Archaeon from a Freshwater Aquarium Biofilter.


ABSTRACT: Ammonia is a metabolic waste product excreted by aquatic organisms that causes toxicity when it accumulates. Aquaria and aquaculture systems therefore use biological filters that promote the growth of nitrifiers to convert ammonia to nitrate. Ammonia-oxidizing bacteria (AOB) have been isolated from aquarium biofilters and are available as commercial supplements, but recent evidence suggests that ammonia-oxidizing archaea (AOA) are abundant in aquarium biofilters. In this study, we report the cultivation and closed genome sequence of the novel AOA representative "Candidatus Nitrosotenuis aquarius," which was enriched from a freshwater aquarium biofilter. "Ca Nitrosotenuis aquarius" oxidizes ammonia stoichiometrically to nitrite with a concomitant increase in thaumarchaeotal cells and a generation time of 34.9 h. "Ca Nitrosotenuis aquarius" has an optimal growth temperature of 33°C, tolerates up to 3 mM NH4Cl, and grows optimally at 0.05% salinity. Transmission electron microscopy revealed that "Ca Nitrosotenuis aquarius" cells are rod shaped, with a diameter of ∼0.4 μm and length ranging from 0.6 to 3.6 μm. In addition, these cells possess surface layers (S-layers) and multiple proteinaceous appendages. Phylogenetically, "Ca Nitrosotenuis aquarius" belongs to the group I.1a Thaumarchaeota, clustering with environmental sequences from freshwater aquarium biofilters, aquaculture systems, and wastewater treatment plants. The complete 1.70-Mbp genome contains genes involved in ammonia oxidation, bicarbonate assimilation, flagellum synthesis, chemotaxis, S-layer production, defense, and protein glycosylation. Incubations with differential inhibitors indicate that "Ca Nitrosotenuis aquarius"-like AOA contribute to ammonia oxidation within the aquarium biofilter from which it originated.IMPORTANCE Nitrification is a critical process for preventing ammonia toxicity in engineered biofilter environments. This work describes the cultivation and complete genome sequence of a novel AOA representative enriched from a freshwater aquarium biofilter. In addition, despite the common belief in the aquarium industry that AOB mediate ammonia oxidation, the present study suggests an in situ role for "Ca Nitrosotenuis aquarius"-like AOA in freshwater aquarium biofilters.

SUBMITTER: Sauder LA 

PROVIDER: S-EPMC6146995 | biostudies-other | 2018 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

"Candidatus Nitrosotenuis aquarius," an Ammonia-Oxidizing Archaeon from a Freshwater Aquarium Biofilter.

Sauder Laura A LA   Engel Katja K   Lo Chien-Chi CC   Chain Patrick P   Neufeld Josh D JD  

Applied and environmental microbiology 20180917 19


Ammonia is a metabolic waste product excreted by aquatic organisms that causes toxicity when it accumulates. Aquaria and aquaculture systems therefore use biological filters that promote the growth of nitrifiers to convert ammonia to nitrate. Ammonia-oxidizing bacteria (AOB) have been isolated from aquarium biofilters and are available as commercial supplements, but recent evidence suggests that ammonia-oxidizing archaea (AOA) are abundant in aquarium biofilters. In this study, we report the cul  ...[more]

Similar Datasets

| S-EPMC6776761 | biostudies-literature
| S-EPMC4836417 | biostudies-literature
| S-EPMC5797428 | biostudies-literature
| S-EPMC3510587 | biostudies-literature
| S-EPMC4313803 | biostudies-literature
| S-EPMC8573960 | biostudies-literature
| S-EPMC3318490 | biostudies-literature
| S-EPMC6805073 | biostudies-literature
| S-EPMC5398378 | biostudies-literature
| S-EPMC3510607 | biostudies-literature