Optimal selection of molecular descriptors for antimicrobial peptides classification: an evolutionary feature weighting approach.
Ontology highlight
ABSTRACT: Antimicrobial peptides are a promising alternative for combating pathogens resistant to conventional antibiotics. Computer-assisted peptide discovery strategies are necessary to automatically assess a significant amount of data by generating models that efficiently classify what an antimicrobial peptide is, before its evaluation in the wet lab. Model's performance depends on the selection of molecular descriptors for which an efficient and effective approach has recently been proposed. Unfortunately, how to adapt this method to the selection of molecular descriptors for the classification of antimicrobial peptides and the performance it can achieve, have only preliminary been explored.We propose an adaptation of this successful feature selection approach for the weighting of molecular descriptors and assess its performance. The evaluation is conducted on six high-quality benchmark datasets that have previously been used for the empirical evaluation of state-of-art antimicrobial prediction tools in an unbiased manner. The results indicate that our approach substantially reduces the number of required molecular descriptors, improving, at the same time, the performance of classification with respect to using all molecular descriptors. Our models also outperform state-of-art prediction tools for the classification of antimicrobial and antibacterial peptides.The proposed methodology is an efficient approach for the development of models to classify antimicrobial peptides. Particularly in the generation of models for discrimination against a specific antimicrobial activity, such as antibacterial. One of our future directions is aimed at using the obtained classifier to search for antimicrobial peptides in various transcriptomes.
<h4>Background</h4>Antimicrobial peptides are a promising alternative for combating pathogens resistant to conventional antibiotics. Computer-assisted peptide discovery strategies are necessary to automatically assess a significant amount of data by generating models that efficiently classify what an antimicrobial peptide is, before its evaluation in the wet lab. Model's performance depends on the selection of molecular descriptors for which an efficient and effective approach has recently been ...[more]
Project description:Data classification is a fundamental task in data mining. Within this field, the classification of multi-labeled data has been seriously considered in recent years. In such problems, each data entity can simultaneously belong to several categories. Multi-label classification is important because of many recent real-world applications in which each entity has more than one label. To improve the performance of multi-label classification, feature selection plays an important role. It involves identifying and removing irrelevant and redundant features that unnecessarily increase the dimensions of the search space for the classification problems. However, classification may fail with an extreme decrease in the number of relevant features. Thus, minimizing the number of features and maximizing the classification accuracy are two desirable but conflicting objectives in multi-label feature selection. In this article, we introduce a multi-objective optimization algorithm customized for selecting the features of multi-label data. The proposed algorithm is an enhanced variant of a decomposition-based multi-objective optimization approach, in which the multi-label feature selection problem is divided into single-objective subproblems that can be simultaneously solved using an evolutionary algorithm. This approach leads to accelerating the optimization process and finding more diverse feature subsets. The proposed method benefits from a local search operator to find better solutions for each subproblem. We also define a pool of genetic operators to generate new feature subsets based on old generation. To evaluate the performance of the proposed algorithm, we compare it with two other multi-objective feature selection approaches on eight real-world benchmark datasets that are commonly used for multi-label classification. The reported results of multi-objective method evaluation measures, such as hypervolume indicator and set coverage, illustrate an improvement in the results obtained by the proposed method. Moreover, the proposed method achieved better results in terms of classification accuracy with fewer features compared with state-of-the-art methods.
Project description:Antimicrobial peptides (AMPs) represent a class of natural peptides that form a part of the innate immune system, and this kind of 'nature's antibiotics' is quite promising for solving the problem of increasing antibiotic resistance. In view of this, it is highly desired to develop an effective computational method for accurately predicting novel AMPs because it can provide us with more candidates and useful insights for drug design. In this study, a new method for predicting AMPs was implemented by integrating the sequence alignment method and the feature selection method. It was observed that, the overall jackknife success rate by the new predictor on a newly constructed benchmark dataset was over 80.23%, and the Mathews correlation coefficient is 0.73, indicating a good prediction. Moreover, it is indicated by an in-depth feature analysis that the results are quite consistent with the previously known knowledge that some amino acids are preferential in AMPs and that these amino acids do play an important role for the antimicrobial activity. For the convenience of most experimental scientists who want to use the prediction method without the interest to follow the mathematical details, a user-friendly web-server is provided at http://amp.biosino.org/.
Project description:BackgroundIn the clinical context, samples assayed by microarray are often classified by cell line or tumour type and it is of interest to discover a set of genes that can be used as class predictors. The leukemia dataset of Golub et al. 1 and the NCI60 dataset of Ross et al. 2 present multiclass classification problems where three tumour types and nine cell lines respectively must be identified. We apply an evolutionary algorithm to identify the near-optimal set of predictive genes that classify the data. We also examine the initial gene selection step whereby the most informative genes are selected from the genes assayed.ResultsIn the absence of feature selection, classification accuracy on the training data is typically good, but not replicated on the testing data. Gene selection using the RankGene software 3 is shown to significantly improve performance on the testing data. Further, we show that the choice of feature selection criteria can have a significant effect on accuracy. The evolutionary algorithm is shown to perform stably across the space of possible parameter settings - indicating the robustness of the approach. We assess performance using a low variance estimation technique, and present an analysis of the genes most often selected as predictors.ConclusionThe computational methods we have developed perform robustly and accurately, and yield results in accord with clinical knowledge: A Z-score analysis of the genes most frequently selected identifies genes known to discriminate AML and Pre-T ALL leukemia. This study also confirms that significantly different sets of genes are found to be most discriminatory as the sample classes are refined.
Project description:BackgroundPoor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties.ResultsThe models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/-bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction.ConclusionThe logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an entity to facilitate prediction of oral bioavailability.
Project description:The accurate classification of microbes is critical in today's context for monitoring the ecological balance of a habitat. Hence, in this research work, a novel method to automate the process of identifying microorganisms has been implemented. To extract the bodies of microorganisms accurately, a generalized segmentation mechanism which consists of a combination of convolution filter (Kirsch) and a variance-based pixel clustering algorithm (Otsu) is proposed. With exhaustive corroboration, a set of twenty-five features were identified to map the characteristics and morphology for all kinds of microbes. Multiple techniques for feature selection were tested and it was found that mutual information (MI)-based models gave the best performance. Exhaustive hyperparameter tuning of multilayer layer perceptron (MLP), k-nearest neighbors (KNN), quadratic discriminant analysis (QDA), logistic regression (LR), and support vector machine (SVM) was done. It was found that SVM radial required further improvisation to attain a maximum possible level of accuracy. Comparative analysis between SVM and improvised SVM (ISVM) through a 10-fold cross validation method ultimately showed that ISVM resulted in a 2% higher performance in terms of accuracy (98.2%), precision (98.2%), recall (98.1%), and F1 score (98.1%).
Project description:Speech emotion recognition (SER) is a challenging issue because it is not clear which features are effective for classification. Emotionally related features are always extracted from speech signals for emotional classification. Handcrafted features are mainly used for emotional identification from audio signals. However, these features are not sufficient to correctly identify the emotional state of the speaker. The advantages of a deep convolutional neural network (DCNN) are investigated in the proposed work. A pretrained framework is used to extract the features from speech emotion databases. In this work, we adopt the feature selection (FS) approach to find the discriminative and most important features for SER. Many algorithms are used for the emotion classification problem. We use the random forest (RF), decision tree (DT), support vector machine (SVM), multilayer perceptron classifier (MLP), and k-nearest neighbors (KNN) to classify seven emotions. All experiments are performed by utilizing four different publicly accessible databases. Our method obtains accuracies of 92.02%, 88.77%, 93.61%, and 77.23% for Emo-DB, SAVEE, RAVDESS, and IEMOCAP, respectively, for speaker-dependent (SD) recognition with the feature selection method. Furthermore, compared to current handcrafted feature-based SER methods, the proposed method shows the best results for speaker-independent SER. For EMO-DB, all classifiers attain an accuracy of more than 80% with or without the feature selection technique.
Project description:Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method) but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.
Project description:Feature selection and classification are the main topics in microarray data analysis. Although many feature selection methods have been proposed and developed in this field, SVM-RFE (Support Vector Machine based on Recursive Feature Elimination) is proved as one of the best feature selection methods, which ranks the features (genes) by training support vector machine classification model and selects key genes combining with recursive feature elimination strategy. The principal drawback of SVM-RFE is the huge time consumption. To overcome this limitation, we introduce a more efficient implementation of linear support vector machines and improve the recursive feature elimination strategy and then combine them together to select informative genes. Besides, we propose a simple resampling method to preprocess the datasets, which makes the information distribution of different kinds of samples balanced and the classification results more credible. Moreover, the applicability of four common classifiers is also studied in this paper. Extensive experiments are conducted on six most frequently used microarray datasets in this field, and the results show that the proposed methods have not only reduced the time consumption greatly but also obtained comparable classification performance.
Project description:Arrhythmia constitutes a problem with the rate or rhythm of the heartbeat, and an early diagnosis is essential for the timely inception of successful treatment. We have jointly optimized the entire multi-stage arrhythmia classification scheme based on 12-lead surface ECGs that attains the accuracy performance level of professional cardiologists. The new approach is comprised of a three-step noise reduction stage, a novel feature extraction method and an optimal classification model with finely tuned hyperparameters. We carried out an exhaustive study comparing thousands of competing classification algorithms that were trained on our proprietary, large and expertly labeled dataset consisting of 12-lead ECGs from 40,258 patients with four arrhythmia classes: atrial fibrillation, general supraventricular tachycardia, sinus bradycardia and sinus rhythm including sinus irregularity rhythm. Our results show that the optimal approach consisted of Low Band Pass filter, Robust LOESS, Non Local Means smoothing, a proprietary feature extraction method based on percentiles of the empirical distribution of ratios of interval lengths and magnitudes of peaks and valleys, and Extreme Gradient Boosting Tree classifier, achieved an F1-Score of 0.988 on patients without additional cardiac conditions. The same noise reduction and feature extraction methods combined with Gradient Boosting Tree classifier achieved an F1-Score of 0.97 on patients with additional cardiac conditions. Our method achieved the highest classification accuracy (average 10-fold cross-validation F1-Score of 0.992) using an external validation data, MIT-BIH arrhythmia database. The proposed optimal multi-stage arrhythmia classification approach can dramatically benefit automatic ECG data analysis by providing cardiologist level accuracy and robust compatibility with various ECG data sources.
Project description:Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues.