MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/?-catenin positive feedback loop.
Ontology highlight
ABSTRACT: Aberrant activation of Wnt/?-catenin signaling pathway is considered to be an important issue in progression and metastasis of various human cancers, especially in colorectal cancer (CRC). MiR-452 could activate of Wnt/?-catenin signaling. But the mechanism remains unclear.The expression of miR-452 in CRC and normal tissues was detected by real-time quantitative PCR. The effect of miR-452 on CRC growth and invasion was conducted by functional experiments in vitro and in vivo. Bioinformatics and cell luciferase function studies verified the direct regulation of miR-452 on the 3'-UTR of the GSK3?, which leads to the activation of Wnt/?-catenin signaling.MiR-452 was upregulated in CRC compared with normal tissues and was correlated with clinical significance. The luciferase reporter system studies affirmed the direct regulation of miR-452 on the 3'-UTR of the GSK3?, which activate the Wnt/?-catenin signaling. The ectopic upregulation of miR-452 significantly inhibited the expression of GSK3? and enhanced CRC proliferation and invasion in vitro and in vivo. Meanwhile, knockdown of miR-452 significantly recovered the expression of GSK3? and attenuated Wnt/?-catenin-mediated cell metastasis and proliferation. More important, T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors, which are crucial downstream molecules of the Wnt/?-catenin signaling pathway was verified as a valid transcription factor of miR-452's promoter.Our findings first demonstrate that miR-452-GSK3?-LEF1/TCF4 positive feedback loop induce CRC proliferation and migration.
Journal of experimental & clinical cancer research : CR 20180925 1
<h4>Background</h4>Aberrant activation of Wnt/β-catenin signaling pathway is considered to be an important issue in progression and metastasis of various human cancers, especially in colorectal cancer (CRC). MiR-452 could activate of Wnt/β-catenin signaling. But the mechanism remains unclear.<h4>Methods</h4>The expression of miR-452 in CRC and normal tissues was detected by real-time quantitative PCR. The effect of miR-452 on CRC growth and invasion was conducted by functional experiments in vit ...[more]
Project description:BackgroundMiR-452-5p plays an essential role in the development of a variety of tumors, but little is known about its biological function and mechanism in colorectal cancer (CRC).MethodsThe expression levels of miR-452-5p in CRC tissues and cells were detected by real-time quantitative PCR (qRT-PCR). Besides, the biological effects of miR-452-5p on CRC were investigated by functional experiments in vitro and in vivo. Furthermore, bioinformatics analysis, dual-luciferase reporter assay, chromatin immunecipitation assay, western blotting and recovery experiments were implemented to investigate the underlying molecular mechanism.ResultsThe expression level of miR-452-5p was up-regulated in CRC tissues. MiR-452-5p promoted CRC cell proliferation, cell cycle transition and chemoresistance, and inhibited cell apoptosis. Moreover, miR-452-5p directly targeted PKN2 and DUSP6 and subsequently activated the ERK/MAPK signaling pathway, and it was transcriptionally regulated by c-Jun.ConclusionTo conclude, miR-452-5p expression is up-regulated in CRC, which promotes the progression of CRC by activating the miR-452-5p-PKN2/DUSP6-c-Jun positive feedback loop. These findings indicate that miR-452-5p may act as a potential therapeutic target and clinical response biomarker for CRC.
Project description:Differentiation of human mesenchymal stem cells into osteoblasts is controlled by extracellular cues. Canonical Wnt signaling is particularly important for maintenance of bone mass in humans. Post-transcriptional regulation of gene expression, mediated by microRNAs, plays an essential role in the control of osteoblast differentiation. Here, we find that miR-29a is necessary for human osteoblast differentiation, and miR-29a is increased during differentiation in the mesenchymal precursor cell line hFOB1.19 and in primary cultures of human osteoblasts. Furthermore, the promoter of the expressed sequence tag containing the human miR-29a gene is induced by canonical Wnt signaling. This effect is mediated, at least in part, by two T-cell factor/LEF-binding sites within the proximal promoter. Furthermore, we show that the negative regulators of Wnt signaling, Dikkopf-1 (Dkk1), Kremen2, and secreted frizzled related protein 2 (sFRP2), are direct targets of miR-29a. Endogenous protein levels for these Wnt antagonists are increased in cells transfected with synthetic miR-29a inhibitor. In contrast, transfection with miR-29a mimic decreases expression of these antagonists and potentiates Wnt signaling. Overall, we demonstrate that miR-29 and Wnt signaling are involved in a regulatory circuit that can modulate osteoblast differentiation. Specifically, canonical Wnt signaling induces miR-29a transcription. The subsequent down-regulation of key Wnt signaling antagonists, Dkk1, Kremen2, and sFRP2, by miR-29a potentiates Wnt signaling, contributing to a gene expression program important for osteoblast differentiation. This novel regulatory circuit provides additional insight into how microRNAs interact with signaling molecules during osteoblast differentiation, allowing for fine-tuning of intricate cellular processes.
Project description:microRNAs (miRNAs or miRs) are endogenous noncoding single?stranded RNA molecules that can regulate gene expression by targeting the 3'?untranslated region and play an important role in many biological and pathological processes, such as inflammation and cancer. In this study, we found that miR?20b was significantly increased in human non?small cell lung cancer (NSCLC) cell lines and patient tissues, suggesting that it may possess a carcinogenic role in lung cancer. This miRNA promoted the proliferation, migration and invasion of NSCLC cells by targeting and downregulating the expression of adenomatous polyposis coli (APC), which is a negative regulator of the canonical Wnt signaling pathway. Wnt signaling activation may increase transcription of miR?20b. Therefore, miR?20b and canonical Wnt signaling were coupled through a feed?forward positive feedback loop, forming a biological regulatory circuit. Finally, an in vivo investigation further demonstrated that an increase in miR?20b promoted the growth of cancer cells. Overall, our findings offer evidence that miR?20b may contribute to the development of NSCLC by inhibiting APC via the canonical Wnt signaling pathway.
Project description:Non-coding RNAs play essential roles in breast cancer progression by regulating proliferation, differentiation, invasion, and metastasis. However, our understanding of most microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in breast cancer is still limited. miR-586 has been identified as an important factor in the progression of some types of cancer, but its exact function and relative regulation mechanisms in breast cancer development need to be further investigated. In this study, we showed miR-586 functioned as an oncogene by promoting breast cancer proliferation and metastasis both in vitro and in vivo. Meanwhile, miR-586 induced Wnt/β-catenin activation by directly targeting Wnt/β-catenin signaling antagonists SFRP1 and DKK2/3. Moreover, we demonstrated that LINC01189 functioned as a tumor suppressor and inhibited breast cancer progression through inhibiting an epithelial-mesenchymal transition (EMT)-like phenotype by sponging miR-586. In addition, β-catenin/TCF4 transactivated ZEB1, resulting in a transcriptional repression of LINC01189 expression. In conclusion, our data uncovered the LINC01189-miR-586-ZEB1 feedback loop and provided a novel mechanism participating in the regulation of Wnt/β-catenin signaling in breast cancer progression.
Project description:BackgroundSmall nucleolar RNA host gene (SNHG) long noncoding RNAs (lncRNAs) are frequently dysregulated in human cancers and involved in tumorigenesis and progression. SNHG17 has been reported as a candidate oncogene in several cancer types, however, its regulatory role in colorectal cancer (CRC) is unclear.MethodsSNHG17 expression in multiple CRC cohorts was assessed by RT-qPCR or bioinformatic analyses. Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell mobility and invasiveness were assessed by Transwell assays. Tumor xenograft and metastasis models were applied to confirm the effects of SNHG17 on CRC tumorigenesis and metastasis in vivo. Immunohistochemistry staining was used to measure protein expression in cancer tissues. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase assays were used to investigate the molecular mechanism of SNHG17 in CRC.ResultsUsing multiple cohorts, we confirmed that SNHG17 is aberrantly upregulated in CRC and correlated with poor survival. In vitro and in vivo functional assays indicated that SNHG17 facilitates CRC proliferation and metastasis. SNHG17 impedes PES1 degradation by inhibiting Trim23-mediated ubiquitination of PES1. SNHG17 upregulates FOSL2 by sponging miR-339-5p, and FOSL2 transcription activates SNHG17 expression, uncovering a SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop.ConclusionsWe identified SNHG17 as an oncogenic lncRNA in CRC and identified abnormal upregulation of SNHG17 as a prognostic risk factor for CRC. Our mechanistic investigations demonstrated, for the first time, that SNHG17 promotes tumor growth and metastasis through two different regulatory mechanisms, SNHG17-Trim23-PES1 axis and SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop, which may be exploited for CRC therapy.
Project description:Resistance to molecular targeted therapies is a significant challenge for advanced colorectal cancer (CRC). Understanding the underlying mechanisms and developing effective strategies against regorafenib resistance are highly desired in the clinic. Here, we screened the expression of chemokine receptors and identified CC chemokine receptor 2 (CCR2) as a top upregulated gene in regorafenib-resistant cells. CCR2 silencing alleviated drug tolerance in regorafenib-resistant cells, while overexpression of CCR2 enhanced CRC cells resistance to regorafenib. Moreover, CCR2-mediated regorafenib tolerance was demonstrated to be associated with AKT/GSK3β-regulated β-catenin stabilization. In turn, β-catenin modulation is sufficient to trigger the transcriptional activation of CCR2 expression. Clinically, high-CCR2 expression was correlated to shorter overall survival and disease-free survival of patients. A positive correlation between CCR2 and nuclear β-catenin expression was observed in a cohort of CRC tissues. Altogether, these findings suggest β-catenin and CCR2 are part of a positive-feedback loop, which sustains a high CCR2 expression level, conferring CRC cells resistance to regorafenib. Thus, targeting CCR2 may be a useful therapeutic strategy to alleviate regorafenib tolerance to increase the efficacy of CRC treatments.
Project description:BackgroundSETD1A, a member of SET1/MLL family H3K4 methyltransferases, is involved in the tumorigenesis of numerous cancers. However, the biological role and mechanism of SETD1A in non-small cell lung cancer (NSCLC) remain to be elucidated.MethodsThe expression of SETD1A, NEAT1, EZH2, and β-catenin in NSCLC tissues and cell lines was detected by qRT-PCR, immunohistochemistry and western blotting. The regulatory mechanisms were validated by chromatin immunoprecipitation, co-immunoprepitation and luciferase reporter assay. The self-renewal, cisplatin sensitivity and tumorigenesis of NSCLC cells were analyzed using sphere formation, CCK-8, colony formation assays and xenograft tumor models.ResultsSETD1A expression was significantly increased in NSCLC and its overexpression predicted a poor prognosis of patients with NSCLC. Functional experiments showed that SETD1A positively regulated cancer stem cell property and negatively regulated cisplatin sensitivity in NSCLC cells via the Wnt/β-catenin pathway. Next, we found that SETD1A positively regulated the Wnt/β-catenin pathway via interacting with and stabilizing β-catenin. The SET domain is dispensable for the interaction between SETD1A and β-catenin. Furthermore, we identified that SETD1A bound to the promoters of NEAT1 and EZH2 to activate gene transcription by inducing H3K4me3 enrichment. Rescue experiments showed that SETD1A promoted the Wnt/β-catenin pathway and exerted its oncogenic functions in NSCLC, at least, partly through NEAT1 and EZH2 upregulation. In addition, SETD1A was proven to be a direct target of the Wnt/β-catenin pathway, thus forming a positive feedback loop in NSCLC cells.ConclusionSETD1A and Wnt/β-catenin pathway form a positive feedback loop and coordinately contribute to NSCLC progression.
Project description:Hepatocellular carcinoma (HCC) is a prevalent solid tumor with a high global death rate. SRY box 9 (SOX9) has been reported as an oncogene in HCC by several studies, but the underlying mechanism remains largely unexplored. Here, we confirmed upregulation of SOX9 in HCC tissues and cell lines and validated that SOX9 facilitates proliferation, migration and invasion in HCC. We subsequently identified that the long non-coding RNA (lncRNA) SOX9 antisense RNA 1 (SOX9-AS1) is a neighbor gene to SOX9; SOX9-AS1 is also upregulated in HCC, and its expression is positively correlated with that of SOX9. In addition, SOX9-AS1 appears to have prognostic significance in HCC patients. We showed that SOX9-AS1 aggravates HCC progression and metastasis in vitro and in vivo. We demonstrated that SOX9-AS1 sponges miR-5590-3p to elevate SOX9 expression, and that SOX9 in turn transcriptionally activates SOX9-AS1. Moreover, we verified that SOX9-AS1 regulates SOX9 and its known downstream Wnt/β-catenin pathway so as to facilitate epithelial-to-mesenchymal transition. The results of our rescue assays suggest that SOX9-AS1 regulates HCC progression through SOX9 and the Wnt/β-catenin pathway. In conclusion, our study demonstrates that a SOX9-AS1/miR-5590-3p/SOX9 positive feedback loop drives tumor growth and metastasis in HCC through the Wnt/β-catenin pathway, suggesting SOX9-AS1 as a novel potential prognostic and treatment target for HCC.
Project description:Glioma has been a major healthcare burden; however, the specific molecular regulatory mechanism underlying its initiation and progression remains to be elucidated. Although it is known that many miRNAs are involved in the regulation of malignant phenotypes of glioma, the role of miR-4476 has not been reported yet. In the present study, we identify miR-4476 as an upregulated microRNA, which promotes cell proliferation, migration, and invasion in glioma. Further mechanistic analyses indicate that the adenomatous polyposis coli (APC), a negative regulator of the Wnt/?-catenin signaling pathway, is a direct target of miR-4476 and mediates the oncogenic effects of miR-4476 in glioma. C-Jun, a downstream effector of the Wnt/?-catenin signaling, is upregulated by miR-4476 overexpression. In turn, c-Jun could positively regulate miR-4476 expression by binding to the upstream of its transcription start site (TSS). Furthermore, in our clinical samples, increased miR-4476 is an unfavorable prognostic factor, and its expression positively correlates with c-Jun expression but negatively correlates with that of APC. In conclusion, our study demonstrates that miR-4476 acts as a tumor enhancer, directly targeting APC to stimulate its own expression and promoting the malignant phenotypes of glioma.
Project description:Lung adenocarcinoma (LUAD) is the main histological type of lung cancer, which is the leading cause of cancer-related deaths. Long non-coding RNAs (lncRNAs) were recently revealed to be involved in various cancers. However, the clinical relevance and potential biological roles of most lncRNAs in LUAD remain unclear. Here, we identified a prognosis-related lncRNA ITGB1-DT in LUAD. ITGB1-DT was upregulated in LUAD and high expression of ITGB1-DT was correlated with advanced clinical stages and poor overall survival and disease-free survival. Enhanced expression of ITGB1-DT facilitated LUAD cellular proliferation, migration, and invasion, and also lung metastasis in vivo. Knockdown of ITGB1-DT repressed LUAD cellular proliferation, migration, and invasion. ITGB1-DT interacted with EZH2, repressed the binding of EZH2 to ITGB1 promoter, reduced H3K27me3 levels at ITGB1 promoter region, and therefore activated ITGB1 expression. Through upregulating ITGB1, ITGB1-DT activated Wnt/β-catenin pathway and its downstream target MYC in LUAD. The expressions of ITGB1-DT, ITGB1, and MYC were positively correlated with each other in LUAD tissues. Intriguingly, ITGB1-DT was found as a transcriptional target of MYC. MYC directly transcriptionally activated ITGB1-DT expression. Thus, ITGB1-DT formed a positive feedback loop with ITGB1/Wnt/β-catenin/MYC. The oncogenic roles of ITGB1-DT were reversed by depletion of ITGB1 or inhibition of Wnt/β-catenin pathway. In summary, these findings revealed ITGB1-DT as a prognosis-related and oncogenic lncRNA in LUAD via activating the ITGB1-DT/ITGB1/Wnt/β-catenin/MYC positive feedback loop. These results implicated ITGB1-DT as a potential prognostic biomarker and therapeutic target for LUAD.