The Association of Epicardial Adipose Tissue and the Metabolic Syndrome in Community Participants in South Africa.
Ontology highlight
ABSTRACT: Background:We sought to determine the association of echocardiographically derived epicardial adipose tissue (EAT) thickness, which is a component of visceral adipose tissue, with the metabolic syndrome (MetS) in a cohort of randomly selected community participants. Methods:South African-Asian Indians aged 15-64 years were recruited over a 2-year period after informed consent was obtained. All participants who had complete measurements done for biochemistry and echocardiography (using established criteria), were dichotomized into the MetS or non-MetS groups defined according to the harmonized criteria. Results:Of the 953 (232 men and 721 women) participants recruited, 47.1% (448) were classified with the MetS. These participants had larger waist circumference and body mass index (P < 0.001), with larger LA volumes and diameter, thicker ventricular walls, higher left ventricular mass, relative wall thickness, and EAT (P < 0.001). There was a corresponding increase in EAT thickness with increasing number of MetS risk factors at the transition from 0 MetS factors to 1 (95% confidence interval [CI] -0.8; -0.2) and from 2 to 3 MetS factors (95% CI -0.9; -0.4). The AUC of the receiver operator curve was highest for triglycerides (0.845), followed by fasting plasma glucose (0.795) and then EAT (0.789). An EAT value of <3.6 mm predicted the presence of the MetS with a 78% sensitivity and 70% specificity. Using backward stepwise logistic regression, the most significant independent determinants of the MetS after adjusting for age, gender, and type 2 diabetes mellitus, was fasting plasma glucose (odds ratio [OR] = 1.2), triglycerides (OR = 7.1), and EAT (OR = 2.3). Conclusion:Although EAT is associated with the MetS, and can identify individuals at increased cardiometabolic risk, it has a limited additional role compared to current risk markers.
SUBMITTER: Prakaschandra RD
PROVIDER: S-EPMC6172886 | biostudies-other | 2018 Jul-Sep
REPOSITORIES: biostudies-other
ACCESS DATA