Unknown

Dataset Information

0

A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: Initial results in an anthropomorphic prostate phantom.


ABSTRACT: This work demonstrates a new method for the generation of mechanical shear wave during magnetic resonance elastography (MRE) that creates greater forces at higher vibrational frequencies as opposed to conventionally used pneumatic transducers. We developed an MR-compatible pneumatic turbine with an eccentric mass that creates a sinusoidal centrifugal force. The turbine was assessed with respect to its technical parameters and evaluated for MRE on a custom-made anthropomorphic prostate phantom. The silicone-based tissue-mimicking materials of the phantom were selected with regard to their complex shear moduli examined by rheometric testing. The tissue-mimicking materials closely matched human soft tissue elasticity values with a complex shear modulus ranging from 3.21 kPa to 7.29 kPa. We acquired MRE images on this phantom at 3 T with actuation frequencies of 50, 60 Hz, 70 Hz, and 80 Hz. The turbine generated vibrational wave amplitudes sufficiently large to entirely penetrate the phantoms during the feasibility study. Increased wave length in the stiffer inclusions compared to softer background material were detected. Our initial results suggest that silicone-based phantoms are useful for the evaluation of elasticities during MRE. Furthermore, our turbine seems suitable for the mechanical assessment of soft tissue during MRE.

SUBMITTER: Neumann W 

PROVIDER: S-EPMC6175527 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: Initial results in an anthropomorphic prostate phantom.

Neumann Wiebke W   Bichert Andreas A   Fleischhauer Jonas J   Stern Antonia A   Figuli Roxana R   Wilhelm Manfred M   Schad Lothar R LR   Zöllner Frank G FG  

PloS one 20181008 10


This work demonstrates a new method for the generation of mechanical shear wave during magnetic resonance elastography (MRE) that creates greater forces at higher vibrational frequencies as opposed to conventionally used pneumatic transducers. We developed an MR-compatible pneumatic turbine with an eccentric mass that creates a sinusoidal centrifugal force. The turbine was assessed with respect to its technical parameters and evaluated for MRE on a custom-made anthropomorphic prostate phantom. T  ...[more]

Similar Datasets

| S-EPMC5519219 | biostudies-literature
| S-EPMC9388595 | biostudies-literature
| S-EPMC5963765 | biostudies-literature
| S-EPMC6865090 | biostudies-literature
| S-EPMC5714524 | biostudies-literature
| S-EPMC6843814 | biostudies-literature
| S-EPMC5970204 | biostudies-literature
| S-EPMC5689999 | biostudies-literature
| S-EPMC7643145 | biostudies-literature
| S-EPMC7063285 | biostudies-literature