Unknown

Dataset Information

0

Rings of congruence preserving functions.


ABSTRACT: Let C0(G) denote the near-ring of congruence preserving functions of the group G. We investigate the question "When is C0(G) a ring?". We obtain information externally via the lattice structure of the normal subgroups of G and internally via structural properties of the group G.

SUBMITTER: Maxson CJ 

PROVIDER: S-EPMC6182409 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

Rings of congruence preserving functions.

Maxson C J CJ   Saxinger Frederik F  

Monatshefte fur Mathematik 20171108 3


Let C 0 ( G ) denote the near-ring of congruence preserving functions of the group <i>G</i>. We investigate the question "When is C 0 ( G ) a ring?". We obtain information externally via the lattice structure of the normal subgroups of <i>G</i> and internally via structural properties of the group <i>G</i>. ...[more]

Similar Datasets

| S-EPMC4032665 | biostudies-other
| S-EPMC4642893 | biostudies-literature
| S-EPMC5981605 | biostudies-literature
| S-EPMC3037408 | biostudies-literature
| S-EPMC2234405 | biostudies-literature
| S-EPMC7891402 | biostudies-literature
| S-EPMC6469507 | biostudies-literature
| S-EPMC2693536 | biostudies-literature
| S-EPMC4814780 | biostudies-other
| S-EPMC5637159 | biostudies-literature