Unknown

Dataset Information

0

Pressure shock fronts formed by ultra-fast shear cracks in viscoelastic materials.


ABSTRACT: Spontaneously propagating cracks in solids emit both pressure and shear waves. When a shear crack propagates faster than the shear wave speed of the material, the coalescence of the shear wavelets emitted by the near-crack-tip region forms a shock front that significantly concentrates particle motion. Such a shock front should not be possible for pressure waves, because cracks should not be able to exceed the pressure wave speed in isotropic linear-elastic solids. In this study, we present full-field experimental measurements of dynamic shear cracks in viscoelastic polymers that result in the formation of a pressure shock front, in addition to the shear one. The apparent violation of classic theories is explained by the strain-rate-dependent material behavior of polymers, where the crack speed remains below the highest pressure wave speed prevailing locally around the crack tip. These findings have important implications for the physics and dynamics of shear cracks such as earthquakes.

SUBMITTER: Gori M 

PROVIDER: S-EPMC6232150 | biostudies-other | 2018 Nov

REPOSITORIES: biostudies-other

altmetric image

Publications

Pressure shock fronts formed by ultra-fast shear cracks in viscoelastic materials.

Gori M M   Rubino V V   Rosakis A J AJ   Lapusta N N  

Nature communications 20181112 1


Spontaneously propagating cracks in solids emit both pressure and shear waves. When a shear crack propagates faster than the shear wave speed of the material, the coalescence of the shear wavelets emitted by the near-crack-tip region forms a shock front that significantly concentrates particle motion. Such a shock front should not be possible for pressure waves, because cracks should not be able to exceed the pressure wave speed in isotropic linear-elastic solids. In this study, we present full-  ...[more]

Similar Datasets

| S-EPMC5972540 | biostudies-literature
| S-EPMC5216382 | biostudies-literature
| S-EPMC5551731 | biostudies-other
| S-EPMC9168469 | biostudies-literature
| S-EPMC9630419 | biostudies-literature
| S-EPMC4895715 | biostudies-literature
2016-12-06 | GSE60865 | GEO
| S-EPMC7040729 | biostudies-literature
| S-EPMC2584606 | biostudies-literature
| S-EPMC5521245 | biostudies-other