Unknown

Dataset Information

0

Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells.


ABSTRACT: Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (???500?nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the short-wavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300-450?nm) to diminish the severe surface recombination that occurs in c-Si NWSCs. The developed Ir(III) complexes can be considered promising energy converters because they exhibit superior intrinsic properties such as a high quantum yield, a large Stokes shift, a long exciton diffusion length in crystalline film, and a reproducible synthetic procedure. Using the developed Ir(III) complexes, highly crystalline energy downshifting layers were fabricated by ultrasonic spray deposition to enhance the photoluminescence efficiency by increasing the radiative decay. With the optimized energy downshifting layer, our 1?cm2 c-Si NWSCs with Ir(III) complexes exhibited a higher IQE value for short-wavelength light (300-450?nm) compared with that of bare Si NWSCs without Ir(III) complexes, resulting in a notable increase in the short-circuit current density (from 34.4?mA·cm-2 to 36.5?mA·cm-2).

SUBMITTER: Kim HT 

PROVIDER: S-EPMC6242905 | biostudies-other | 2018 Nov

REPOSITORIES: biostudies-other

altmetric image

Publications

Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells.

Kim Hyun-Tak HT   Lee Kangmin K   Jin Wonjoo W   Um Han-Don HD   Lee Minsoo M   Hwang Eunhye E   Kwon Tae-Hyuk TH   Seo Kwanyong K  

Scientific reports 20181119 1


Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (λ < 450 nm) to photons of longer wavelength (λ > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the short-wavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300-450 nm) to diminish the severe surface recombination that occurs in c-Si NWSC  ...[more]

Similar Datasets

| S-EPMC3607835 | biostudies-other
| S-EPMC7753143 | biostudies-literature
| S-EPMC4661700 | biostudies-other
| S-EPMC4495391 | biostudies-other
| S-EPMC6456691 | biostudies-literature
| S-EPMC6369979 | biostudies-literature
| S-EPMC9018932 | biostudies-literature
| S-EPMC5522453 | biostudies-literature
| S-EPMC6092389 | biostudies-literature
| S-EPMC4245716 | biostudies-literature