Unknown

Dataset Information

0

Impact of TiO? Nanotubes' Morphology on the Photocatalytic Degradation of Simazine Pollutant.


ABSTRACT: There are various approaches to enhancing the catalytic properties of TiO?, including modifying its morphology by altering the surface reactivity and surface area of the catalyst. In this study, the primary aim is to enhance the photocatalytic activity by changing the TiO? nanotubes' architecture. The highly ordered infrastructure is favorable for a better charge carrier transfer. It is well known that anodization affects TiO? nanotubes' structure by increasing the anodization duration which in turn influence the photocatalytic activity. The characterizations were conducted by FE-SEM (fiend emission scanning electron microscopy), XRD (X-ray diffraction), RAMAN (Raman spectroscopy), EDX (Energy dispersive X-ray spectroscopy), UV-Vis (Ultraviolet visible spectroscopy) and LCMS/MS/MS (liquid chromatography mass spectroscopy). We found that the morphological structure is affected by the anodization duration according to FE-SEM. The photocatalytic degradation shows a photodegradation rate of k = 0.0104 min-1. It is also found that a mineralization of Simazine by our prepared TiO? nanotubes leads to the formation of cyanuric acid. We propose three Simazine photodegradation pathways with several intermediates identified.

SUBMITTER: Meriam Suhaimy SH 

PROVIDER: S-EPMC6267015 | biostudies-other | 2018 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

Impact of TiO₂ Nanotubes' Morphology on the Photocatalytic Degradation of Simazine Pollutant.

Meriam Suhaimy Syazwan Hanani SH   Lai Chin Wei CW   Tajuddin Hairul Anuar HA   Samsudin Emy Marlina EM   Johan Mohd Rafie MR  

Materials (Basel, Switzerland) 20181023 11


There are various approaches to enhancing the catalytic properties of TiO₂, including modifying its morphology by altering the surface reactivity and surface area of the catalyst. In this study, the primary aim is to enhance the photocatalytic activity by changing the TiO₂ nanotubes' architecture. The highly ordered infrastructure is favorable for a better charge carrier transfer. It is well known that anodization affects TiO₂ nanotubes' structure by increasing the anodization duration which in  ...[more]

Similar Datasets

| S-EPMC6204776 | biostudies-literature
| S-EPMC6027058 | biostudies-literature
| S-EPMC9016837 | biostudies-literature
| S-EPMC5456889 | biostudies-other
| S-EPMC7039856 | biostudies-literature
| S-EPMC3804859 | biostudies-literature
| S-EPMC6154631 | biostudies-literature
| S-EPMC6164922 | biostudies-literature
| S-EPMC9565840 | biostudies-literature
| S-EPMC8567273 | biostudies-literature