Unknown

Dataset Information

0

Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below.


ABSTRACT: We show that for a noncollapsing sequence of closed, connected, oriented Riemannian manifolds with Ricci curvature bounded below and diameter bounded above, Gromov-Hausdorff convergence agrees with intrinsic flat convergence. In particular, the limiting current is essentially unique, has multiplicity one, and mass equal to the Hausdorff measure. Moreover, the limit spaces satisfy a constancy theorem.

SUBMITTER: Matveev R 

PROVIDER: S-EPMC6294178 | biostudies-other | 2017

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC6294179 | biostudies-literature
| S-EPMC5679330 | biostudies-literature
| S-EPMC9821693 | biostudies-literature
| S-EPMC2527265 | biostudies-literature
| S-EPMC2098735 | biostudies-literature
| S-EPMC8307776 | biostudies-literature
| S-EPMC7641251 | biostudies-literature
| S-EPMC5773765 | biostudies-literature
| S-EPMC6138893 | biostudies-other
| S-EPMC3566444 | biostudies-literature