Unknown

Dataset Information

0

Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption.


ABSTRACT: Porous ?-cyclodextrin polymers linked with tetrafluoroterephthalonitrile (TFN-CDPs) have shown promise for adsorbing organic micropollutants (MPs) more quickly and effectively than conventional adsorbents. Prior to their discovery, the nucleophilic aromatic substitution (SNAr) reaction used to prepare TFN-CDP was nearly unknown for the aliphatic alcohol nucleophiles, and the low isolated yields of TFN-CDP motivated model studies of the reaction between TFN and n-butanol. These experiments reveal a previously undescribed substitution reaction of TFN in which a fluorine is substituted by a hydroxyl group. This process is responsible for the low yields of the polymerization and incorporates phenolate groups into the polymer network. Phenolation and polymerization (etherification) are competing processes, and the level of phenolate incorporation was controlled by varying the rate of base addition and initial monomer concentrations. TFN-CDPs with varying phenolate content were prepared and evaluated as adsorbents for both Pb2+ ions and 83 MPs. More heavily phenolated polymers showed increased capacity to bind Pb2+ ions. Phenolation was also correlated with increased binding affinity for almost all of the 83 MPs tested, including neutral, cationic, and anionic substances. These results leverage a newly discovered side reaction during SNAr reactions of electron-poor aryl fluorides to improve both the yield and the uptake affinity for both lead and organic MPs of TFN-CDPs.

SUBMITTER: Klemes MJ 

PROVIDER: S-EPMC6296297 | biostudies-other | 2018 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption.

Klemes Max J MJ   Ling Yuhan Y   Chiapasco Marta M   Alsbaiee Alaaeddin A   Helbling Damian E DE   Dichtel William R WR  

Chemical science 20180924 47


Porous β-cyclodextrin polymers linked with tetrafluoroterephthalonitrile (TFN-CDPs) have shown promise for adsorbing organic micropollutants (MPs) more quickly and effectively than conventional adsorbents. Prior to their discovery, the nucleophilic aromatic substitution (S<sub>N</sub>Ar) reaction used to prepare TFN-CDP was nearly unknown for the aliphatic alcohol nucleophiles, and the low isolated yields of TFN-CDP motivated model studies of the reaction between TFN and <i>n</i>-butanol. These  ...[more]

Similar Datasets

| S-EPMC9508238 | biostudies-literature
| S-EPMC3897700 | biostudies-literature
| S-EPMC5518284 | biostudies-literature
| S-EPMC4819262 | biostudies-literature
| S-EPMC6541366 | biostudies-literature
| S-EPMC9920965 | biostudies-literature
| S-EPMC7356557 | biostudies-literature
| S-EPMC7589367 | biostudies-literature
| 2326074 | ecrin-mdr-crc
| S-EPMC9086438 | biostudies-literature