Unknown

Dataset Information

0

Female Sex Development and Reproductive Duct Formation Depend on Wnt4a in Zebrafish.


ABSTRACT: In laboratory strains of zebrafish, sex determination occurs in the absence of a typical sex chromosome and it is not known what regulates the proportion of animals that develop as males or females. Many sex determination and gonad differentiation genes that act downstream of a sex chromosome are well conserved among vertebrates, but studies that test their contribution to this process have mostly been limited to mammalian models. In mammals, WNT4 is a signaling ligand that is essential for ovary and Müllerian duct development, where it antagonizes the male-promoting FGF9 signal. Wnt4 is well conserved across all vertebrates, but it is not known if Wnt4 plays a role in sex determination and/or the differentiation of sex organs in nonmammalian vertebrates. This question is especially interesting in teleosts, such as zebrafish, because they lack an Fgf9 ortholog. Here we show that wnt4a is the ortholog of mammalian Wnt4, and that wnt4b was present in the last common ancestor of humans and zebrafish, but was lost in mammals. We show that wnt4a loss-of-function mutants develop predominantly as males and conclude that wnt4a activity promotes female sex determination and/or differentiation in zebrafish. Additionally, both male and female wnt4a mutants are sterile due to defects in reproductive duct development. Together these results strongly argue that Wnt4a is a conserved regulator of female sex determination and reproductive duct development in mammalian and nonmammalian vertebrates.

SUBMITTER: Kossack ME 

PROVIDER: S-EPMC6325708 | biostudies-other | 2019 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Female Sex Development and Reproductive Duct Formation Depend on Wnt4a in Zebrafish.

Kossack Michelle E ME   High Samantha K SK   Hopton Rachel E RE   Yan Yi-Lin YL   Postlethwait John H JH   Draper Bruce W BW  

Genetics 20181116 1


In laboratory strains of zebrafish, sex determination occurs in the absence of a typical sex chromosome and it is not known what regulates the proportion of animals that develop as males or females. Many sex determination and gonad differentiation genes that act downstream of a sex chromosome are well conserved among vertebrates, but studies that test their contribution to this process have mostly been limited to mammalian models. In mammals, WNT4 is a signaling ligand that is essential for ovar  ...[more]

Similar Datasets

| S-EPMC4332673 | biostudies-literature
| S-EPMC5712241 | biostudies-literature
| S-EPMC9073013 | biostudies-literature
2013-07-01 | GSE20926 | GEO
| S-EPMC7609472 | biostudies-literature
| S-EPMC5378344 | biostudies-literature
| S-EPMC3364407 | biostudies-literature
2013-07-01 | E-GEOD-20926 | biostudies-arrayexpress
| S-EPMC3590145 | biostudies-literature
| S-EPMC10475537 | biostudies-literature