ABSTRACT: We aimed to evaluate the accuracy of coronary computed tomography angiography (CCTA) with a low-radiation protocol and iterative model reconstruction (IMR), in comparison with invasive coronary angiography (ICA). Sixty-one patients (45 males; mean age, 61.9?±?9.2 years) with suspected coronary artery disease who underwent CCTA and ICA were retrospectively enrolled. CCTA was performed with low tube voltage (80 or 100 kVp), low tube current (100-200 mAs), prospective ECG triggering, and IMR using a 64-slice computed tomography scanner. Coronary artery disease was defined as luminal narrowing of >50%, as assessed using CCTA and ICA. The sensitivity, specificity, positive (PPV) and negative (NPV) predictive value, and accuracy of CCTA were examined. The mean radiation dose of CCTA was 1.05?±?0.36?mSv. No non-diagnostic segment was noted. The sensitivity, specificity, PPV, NPV, and accuracy of CCTA were 86.4%, 96.1%, 80.3%, 97.5%, and 94.6% on a per segment basis, 93.1%, 94.7%, 88.3%, 97.0%, and 94.2% on a per vessel basis, and 100%, 83.3%, 93.5%, 100%, and 95.1% on a per patient basis, respectively. In conclusion, a low-radiation CCTA protocol with IMR may be useful for diagnosing coronary artery disease, as it reduces the radiation dose while maintaining diagnostic accuracy.