Unknown

Dataset Information

0

A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure.


ABSTRACT: The addition of water on or below the earth's surface generates changes in stress that can trigger both stable and unstable sliding of landslides and faults. While these sliding behaviours are well-described by commonly used mechanical models developed from laboratory testing (e.g., critical-state soil mechanics and rate-and-state friction), less is known about the field-scale environmental conditions or kinematic behaviours that occur during the transition from stable to unstable sliding. Here we use radar interferometry (InSAR) and a simple 1D hydrological model to characterize 8 years of stable sliding of the Mud Creek landslide, California, USA, prior to its rapid acceleration and catastrophic failure on May 20, 2017. Our results suggest a large increase in pore-fluid pressure occurred during a shift from historic drought to record rainfall that triggered a large increase in velocity and drove slip localization, overcoming the stabilizing mechanisms that had previously inhibited landslide acceleration. Given the predicted increase in precipitation extremes with a warming climate, we expect it to become more common for landslides to transition from stable to unstable motion, and therefore a better assessment of this destabilization process is required to prevent loss of life and infrastructure.

SUBMITTER: Handwerger AL 

PROVIDER: S-EPMC6367458 | biostudies-other | 2019 Feb

REPOSITORIES: biostudies-other

altmetric image

Publications

A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure.

Handwerger Alexander L AL   Huang Mong-Han MH   Fielding Eric Jameson EJ   Booth Adam M AM   Bürgmann Roland R  

Scientific reports 20190207 1


The addition of water on or below the earth's surface generates changes in stress that can trigger both stable and unstable sliding of landslides and faults. While these sliding behaviours are well-described by commonly used mechanical models developed from laboratory testing (e.g., critical-state soil mechanics and rate-and-state friction), less is known about the field-scale environmental conditions or kinematic behaviours that occur during the transition from stable to unstable sliding. Here  ...[more]

Similar Datasets

| S-EPMC6850578 | biostudies-literature
| S-EPMC5792914 | biostudies-literature
| S-EPMC4247405 | biostudies-literature
| S-EPMC6792369 | biostudies-literature
| S-EPMC6282977 | biostudies-literature
| S-EPMC6582617 | biostudies-literature
| S-EPMC4877704 | biostudies-other
| S-EPMC6754435 | biostudies-literature
| S-EPMC6143746 | biostudies-literature
| S-EPMC4855591 | biostudies-literature