Unknown

Dataset Information

0

Development of Prediction Models Using Machine Learning Algorithms for Girls with Suspected Central Precocious Puberty: Retrospective Study.


ABSTRACT: BACKGROUND:Central precocious puberty (CPP) in girls seriously affects their physical and mental development in childhood. The method of diagnosis-gonadotropin-releasing hormone (GnRH)-stimulation test or GnRH analogue (GnRHa)-stimulation test-is expensive and makes patients uncomfortable due to the need for repeated blood sampling. OBJECTIVE:We aimed to combine multiple CPP-related features and construct machine learning models to predict response to the GnRHa-stimulation test. METHODS:In this retrospective study, we analyzed clinical and laboratory data of 1757 girls who underwent a GnRHa test in order to develop XGBoost and random forest classifiers for prediction of response to the GnRHa test. The local interpretable model-agnostic explanations (LIME) algorithm was used with the black-box classifiers to increase their interpretability. We measured sensitivity, specificity, and area under receiver operating characteristic (AUC) of the models. RESULTS:Both the XGBoost and random forest models achieved good performance in distinguishing between positive and negative responses, with the AUC ranging from 0.88 to 0.90, sensitivity ranging from 77.91% to 77.94%, and specificity ranging from 84.32% to 87.66%. Basal serum luteinizing hormone, follicle-stimulating hormone, and insulin-like growth factor-I levels were found to be the three most important factors. In the interpretable models of LIME, the abovementioned variables made high contributions to the prediction probability. CONCLUSIONS:The prediction models we developed can help diagnose CPP and may be used as a prescreening tool before the GnRHa-stimulation test.

SUBMITTER: Pan L 

PROVIDER: S-EPMC6390190 | biostudies-other | 2019 Feb

REPOSITORIES: biostudies-other

altmetric image

Publications

Development of Prediction Models Using Machine Learning Algorithms for Girls with Suspected Central Precocious Puberty: Retrospective Study.

Pan Liyan L   Liu Guangjian G   Mao Xiaojian X   Li Huixian H   Zhang Jiexin J   Liang Huiying H   Li Xiuzhen X  

JMIR medical informatics 20190212 1


<h4>Background</h4>Central precocious puberty (CPP) in girls seriously affects their physical and mental development in childhood. The method of diagnosis-gonadotropin-releasing hormone (GnRH)-stimulation test or GnRH analogue (GnRHa)-stimulation test-is expensive and makes patients uncomfortable due to the need for repeated blood sampling.<h4>Objective</h4>We aimed to combine multiple CPP-related features and construct machine learning models to predict response to the GnRHa-stimulation test.<h  ...[more]

Similar Datasets

| S-EPMC7886559 | biostudies-literature
| S-EPMC6251202 | biostudies-literature
| S-EPMC3488615 | biostudies-literature
| S-EPMC7168766 | biostudies-literature
| S-EPMC7792053 | biostudies-literature
| S-EPMC6987398 | biostudies-literature
| S-EPMC9365929 | biostudies-literature
| S-EPMC8056580 | biostudies-literature
| S-EPMC5143281 | biostudies-literature
| S-EPMC10213437 | biostudies-literature