Unknown

Dataset Information

0

Popular Nutrition-Related Mobile Apps: An Agreement Assessment Against a UK Reference Method.


ABSTRACT: BACKGROUND:Nutrition-related apps are commonly used to provide information about the user's dietary intake, but limited research has been performed to assess how well their outputs agree with those from standard methods. OBJECTIVE:The objective of our study was to evaluate the level of agreement of popular nutrition-related apps for the assessment of energy and available macronutrients and micronutrients against a UK reference method. METHODS:We compared dietary analysis of 24-hour weighed food records (n=20) between 5 nutrition-related apps (Samsung Health, MyFitnessPal, FatSecret, Noom Coach, and Lose It!) and Dietplan6 (reference method), using app versions available in the United Kingdom. We compared estimates of energy, macronutrients (carbohydrate, protein, fat, saturated fat, and fiber), and micronutrients (sodium, calcium, iron, vitamin A, and vitamin C) using paired t tests and Wilcoxon signed-rank tests, correlation coefficients, and Bland-Altman plots. We obtained 24-hour weighed food records from 20 participants (15 female, 5 male participants; mean age 36.3 years; mean body mass index 22.9 kg/m2) from previous controlled studies conducted at the Hugh Sinclair Unit of Human Nutrition, University of Reading, Reading, UK. Participants had recorded their food consumption over a 24-hour period using standard protocols. RESULTS:The difference in estimation of energy and saturated fat intake between Dietplan6 and the diet apps was not significant. Estimates of protein and sodium intake were significantly lower using Lose It! and FatSecret than using Dietplan6. Lose It! also gave significantly lower estimates for other reported outputs (carbohydrate, fat, fiber, and sodium) than did Dietplan6. Samsung Health and MyFitnessPal significantly underestimated calcium, iron, and vitamin C compared with Dietplan6, although there was no significant difference for vitamin A. We observed no other significant differences between Dietplan6 and the apps. Correlation coefficients ranged from r=-.12 for iron (Samsung Health vs Dietplan6) to r=.91 for protein (FatSecret vs Dietplan6). Noom Coach was limited to energy output, but it had a high correlation with Dietplan6 (r=.91). Samsung Health had the greatest variation of correlation, with energy at r=.79. Bland-Altman analysis revealed potential proportional bias for vitamin A. CONCLUSIONS:The findings suggest that the apps provide estimates of energy and saturated fat intake comparable with estimates by Dietplan6. With the exception of Lose It!, the apps also provided comparable estimates of carbohydrate, total fat, and fiber. FatSecret and Lose It! tended to underestimate protein and sodium. Estimates of micronutrient intake (calcium, iron, vitamin A, and vitamin C) by 2 apps (Samsung Health and MyFitnessPal) were inconsistent and less reliable. Lose It! was the app least comparable with Dietplan6. As the use and availability of apps grows, this study helps clinicians and researchers to make better-informed decisions about using these apps in research and practice.

SUBMITTER: Fallaize R 

PROVIDER: S-EPMC6401676 | biostudies-other | 2019 Feb

REPOSITORIES: biostudies-other

altmetric image

Publications

Popular Nutrition-Related Mobile Apps: An Agreement Assessment Against a UK Reference Method.

Fallaize Rosalind R   Zenun Franco Rodrigo R   Pasang Jennifer J   Hwang Faustina F   Lovegrove Julie A JA  

JMIR mHealth and uHealth 20190220 2


<h4>Background</h4>Nutrition-related apps are commonly used to provide information about the user's dietary intake, but limited research has been performed to assess how well their outputs agree with those from standard methods.<h4>Objective</h4>The objective of our study was to evaluate the level of agreement of popular nutrition-related apps for the assessment of energy and available macronutrients and micronutrients against a UK reference method.<h4>Methods</h4>We compared dietary analysis of  ...[more]

Similar Datasets

| S-EPMC6364205 | biostudies-literature
| S-EPMC6320405 | biostudies-literature
| S-EPMC5770895 | biostudies-literature
| S-EPMC8160788 | biostudies-literature
| S-EPMC7367524 | biostudies-literature
| S-EPMC9753233 | biostudies-literature
| S-EPMC5525004 | biostudies-other
| S-EPMC8512178 | biostudies-literature
| S-EPMC10909214 | biostudies-literature
| S-EPMC9999256 | biostudies-literature