Unknown

Dataset Information

0

Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries.


ABSTRACT: Unlike the vast majority of transition metal dichalcogenides which are semiconductors, vanadium disulfide is metallic and conductive. This makes it particularly promising as an electrode material in lithium-ion batteries. However, vanadium disulfide exhibits poor stability due to large Peierls distortion during cycling. Here we report that vanadium disulfide flakes can be rendered stable in the electrochemical environment of a lithium-ion battery by conformally coating them with a ~2.5 nm thick titanium disulfide layer. Density functional theory calculations indicate that the titanium disulfide coating is far less susceptible to Peierls distortion during the lithiation-delithiation process, enabling it to stabilize the underlying vanadium disulfide material. The titanium disulfide coated vanadium disulfide cathode exhibits an operating voltage of ~2 V, high specific capacity (~180 mAh g-1 @200 mA g-1 current density) and rate capability (~70 mAh g-1 @1000 mA g-1), while achieving capacity retention close to 100% after 400 charge-discharge steps.

SUBMITTER: Li L 

PROVIDER: S-EPMC6467906 | biostudies-other | 2019 Apr

REPOSITORIES: biostudies-other

altmetric image

Publications

Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries.

Li Lu L   Li Zhaodong Z   Yoshimura Anthony A   Sun Congli C   Wang Tianmeng T   Chen Yanwen Y   Chen Zhizhong Z   Littlejohn Aaron A   Xiang Yu Y   Hundekar Prateek P   Bartolucci Stephen F SF   Shi Jian J   Shi Su-Fei SF   Meunier Vincent V   Wang Gwo-Ching GC   Koratkar Nikhil N  

Nature communications 20190416 1


Unlike the vast majority of transition metal dichalcogenides which are semiconductors, vanadium disulfide is metallic and conductive. This makes it particularly promising as an electrode material in lithium-ion batteries. However, vanadium disulfide exhibits poor stability due to large Peierls distortion during cycling. Here we report that vanadium disulfide flakes can be rendered stable in the electrochemical environment of a lithium-ion battery by conformally coating them with a ~2.5 nm thick  ...[more]

Similar Datasets

| S-EPMC5456936 | biostudies-other
| S-EPMC9300204 | biostudies-literature
| S-EPMC6190730 | biostudies-literature
| S-EPMC8709395 | biostudies-literature
| S-EPMC8452671 | biostudies-literature
| S-EPMC3978500 | biostudies-literature
| S-EPMC7163330 | biostudies-literature
| S-EPMC3665958 | biostudies-literature
| S-EPMC7720120 | biostudies-literature
| S-EPMC4490390 | biostudies-literature