Unknown

Dataset Information

0

Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human Cells.


ABSTRACT: We recently described an unconventional mode of gene regulation in budding yeast by which transcriptional and translational interference collaborate to down-regulate protein expression. Developmentally timed transcriptional interference inhibited production of a well translated mRNA isoform and resulted in the production of an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that prevented translation of the main ORF. Transcriptional interference and uORF-based translational repression are established mechanisms outside of yeast, but whether this type of integrated regulation was conserved was unknown. Here we find that, indeed, a similar type of regulation occurs at the locus for the human oncogene MDM2 We observe evidence of transcriptional interference between the two MDM2 promoters, which produce a poorly translated distal promoter-derived uORF-containing mRNA isoform and a well-translated proximal promoter-derived transcript. Down-regulation of distal promoter activity markedly up-regulates proximal promoter-driven expression and results in local reduction of histone H3K36 trimethylation. Moreover, we observe that this transcript toggling between the two MDM2 isoforms naturally occurs during human embryonic stem cell differentiation programs.

SUBMITTER: Hollerer I 

PROVIDER: S-EPMC6469420 | biostudies-other | 2019 Apr

REPOSITORIES: biostudies-other

altmetric image

Publications

Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human Cells.

Hollerer Ina I   Barker Juliet C JC   Jorgensen Victoria V   Tresenrider Amy A   Dugast-Darzacq Claire C   Chan Leon Y LY   Darzacq Xavier X   Tjian Robert R   Ünal Elçin E   Brar Gloria A GA  

G3 (Bethesda, Md.) 20190409 4


We recently described an unconventional mode of gene regulation in budding yeast by which transcriptional and translational interference collaborate to down-regulate protein expression. Developmentally timed transcriptional interference inhibited production of a well translated mRNA isoform and resulted in the production of an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that prevented translation of the main ORF. Transcriptional interference and uORF-based translation  ...[more]

Similar Datasets

| S-EPMC8153250 | biostudies-literature
| S-EPMC7178424 | biostudies-literature
2020-11-01 | GSE140177 | GEO
| S-EPMC3000347 | biostudies-literature
| S-EPMC3933272 | biostudies-literature
| S-EPMC6839837 | biostudies-literature
| PRJNA588479 | ENA
| S-EPMC4333380 | biostudies-literature
| S-EPMC4723142 | biostudies-literature
| S-EPMC5625827 | biostudies-literature