Synthesis and Application of Polypyrrole/Fe3O4 Nanosize Magnetic Adsorbent for Efficient Separation of Hg2+ from Aqueous Solution.
Ontology highlight
ABSTRACT: In order to prepare the magnetic adsorbent, polymerization of pyrrole is performed in a mixture containing Fe3O4 and FeCl3. FTIR, XRD, SEM, EDAX, BET and VSM techniques are employed to characterize the synthesized adsorbent. The results indicate that a homogeneous film of polypyrrole is formed on the surface of magnetic material. The synthesized adsorbent uptakes 173.16 mg g-1 of Hg2+ from aqueous solution, which is superior to the previously reported results for a similar adsorbent. Magnetic performance of the adsorbent is sufficient to separate the used adsorbent from the solution by use of a magnetic bar placed outside of the vessel. Langmuir, Freundlich, Temkin, Redlich-Peterson, and Sips isotherm models are employed to evaluate the experimental adsorption data. The kinetic models are studied and the experimental data are described by the pseudo-second-order kinetic model. The calculated thermodynamic parameter shows that the sorption process is endothermic and spontaneous. Regeneration of the used adsorbent indicates that more than 90% of the initial capacity remains after regeneration.
SUBMITTER: Falahian Z
PROVIDER: S-EPMC6607352 | biostudies-other | 2018 Jan
REPOSITORIES: biostudies-other
ACCESS DATA