Peripheral sounds elicit stronger activity in contralateral occipital cortex in blind than sighted individuals.
Ontology highlight
ABSTRACT: Previous research has shown that peripheral, task-irrelevant sounds elicit activity in contralateral visual cortex of sighted people, as revealed by a sustained positive deflection in the event-related potential (ERP) over the occipital scalp contralateral to the sound's location. This Auditory-evoked Contralateral Occipital Positivity (ACOP) appears between 200-450 ms after sound onset, and is present even when the task is entirely auditory and no visual stimuli are presented at all. Here, we investigate whether this cross-modal activation of contralateral visual cortex is influenced by visual experience. To this end, ERPs were recorded in 12 sighted and 12 blind subjects during a unimodal auditory task. Participants listened to a stream of sounds and pressed a button every time they heard a central target tone, while ignoring the peripheral noise bursts. It was found that task-irrelevant noise bursts elicited a larger ACOP in blind compared to sighted participants, indicating for the first time that peripheral sounds can enhance neural activity in visual cortex in a spatially lateralized manner even in visually deprived individuals. Overall, these results suggest that the cross-modal activation of contralateral visual cortex triggered by peripheral sounds does not require any visual input to develop, and is rather enhanced by visual deprivation.
SUBMITTER: Amadeo MB
PROVIDER: S-EPMC6690873 | biostudies-other | 2019 Aug
REPOSITORIES: biostudies-other
ACCESS DATA