Unknown

Dataset Information

0

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide.


ABSTRACT: Peptide-based supramolecular hydrogels, as a new type of biological nanoarchitectonic structure, hold great promise for a wide range of biomedical and nanotechnological applications, such as tissue engineering, drug delivery, and electronic and photonic energy storage. In this work, a cyclic dipeptide (CDP) cyclo-(Trp-Tyr) (C-WY), which has exceptional structural rigidity and high stability, is selected as a hydrogelator for the formation of supramolecular hydrogels. The unique hydrogen bonding in C-WY endows a high propensity for self-assembly and the resulting hydrogels are revealed to be crystalline. The crystalline hydrogels possess excellent mechanical capacity and superior tolerance to various harsh conditions, including in the presence of charged biopolymers, extreme acid/base environments, and changing thermal conditions. Such high tolerance enables the crystalline hydrogels to be applied in the complex and harsh environments of electrochemistry. In addition, this study demonstrates that the self-assembly of cyclic dipeptides results in highly robust hydrogels which can be applied for electrochemical applications such as electrochemical supercapacitors.

SUBMITTER: You Y 

PROVIDER: S-EPMC6774068 | biostudies-other | 2019

REPOSITORIES: biostudies-other

altmetric image

Publications

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide.

You Yongcai Y   Xing Ruirui R   Zou Qianli Q   Shi Feng F   Yan Xuehai X  

Beilstein journal of nanotechnology 20190918


Peptide-based supramolecular hydrogels, as a new type of biological nanoarchitectonic structure, hold great promise for a wide range of biomedical and nanotechnological applications, such as tissue engineering, drug delivery, and electronic and photonic energy storage. In this work, a cyclic dipeptide (CDP) cyclo-(Trp-Tyr) (C-WY), which has exceptional structural rigidity and high stability, is selected as a hydrogelator for the formation of supramolecular hydrogels. The unique hydrogen bonding  ...[more]

Similar Datasets

| S-EPMC5678095 | biostudies-literature
| S-EPMC5574881 | biostudies-other
| S-EPMC2946210 | biostudies-literature
| S-EPMC3607250 | biostudies-literature
| S-EPMC10023392 | biostudies-literature
| S-EPMC4624388 | biostudies-literature
| S-EPMC8981472 | biostudies-literature
| S-EPMC5367466 | biostudies-literature
| S-EPMC6993604 | biostudies-literature
| S-EPMC3593039 | biostudies-literature