Unknown

Dataset Information

0

Redox-governed charge doping dictated by interfacial diffusion in two-dimensional materials.


ABSTRACT: Controlling extra charge carriers is pivotal in manipulating electronic, optical, and magnetic properties of various two-dimensional materials. Nonetheless, the ubiquitous hole doping of two-dimensional materials in the air and acids has been controversial in its mechanistic details. Here we show their common origin is an electrochemical reaction driven by redox couples of oxygen and water molecules. Using real-time photoluminescence imaging of WS2 and Raman spectroscopy of graphene, we capture molecular diffusion through the two-dimensional nanoscopic space between two-dimensional materials and hydrophilic substrates, and show that the latter accommodate water molecules also serving as a hydrating solvent. We also demonstrate that HCl-induced doping is governed by dissolved O2 and pH in accordance with the Nernst equation. The nanoscopic electrochemistry anatomized in this work sets an ambient limit to material properties, which is universal to not only 2D but also other forms of materials.

SUBMITTER: Park K 

PROVIDER: S-EPMC6821894 | biostudies-other | 2019 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

Redox-governed charge doping dictated by interfacial diffusion in two-dimensional materials.

Park Kwanghee K   Kang Haneul H   Koo Seonghyun S   Lee DaeEung D   Ryu Sunmin S  

Nature communications 20191030 1


Controlling extra charge carriers is pivotal in manipulating electronic, optical, and magnetic properties of various two-dimensional materials. Nonetheless, the ubiquitous hole doping of two-dimensional materials in the air and acids has been controversial in its mechanistic details. Here we show their common origin is an electrochemical reaction driven by redox couples of oxygen and water molecules. Using real-time photoluminescence imaging of WS<sub>2</sub> and Raman spectroscopy of graphene,  ...[more]

Similar Datasets

| S-EPMC7315632 | biostudies-literature
| S-EPMC4634214 | biostudies-literature
| S-EPMC5567094 | biostudies-literature
| S-EPMC7662931 | biostudies-literature
| S-EPMC5468632 | biostudies-literature
| S-EPMC8566515 | biostudies-literature
| S-EPMC5913130 | biostudies-literature
| S-EPMC5187448 | biostudies-literature
| S-EPMC5606995 | biostudies-literature
| S-EPMC5666000 | biostudies-literature