Project description:The phytochemical sulforaphane can induce cell cycle arrest and apoptosis in metastatic prostate cancer cells, though the mechanism of action is not fully known. We conducted a global proteome analysis in LNCaP metastatic prostate cancer cells to characterize how global protein signature responds to sulforaphane. We conducted parallel analyses to evaluate semi-quantitative 1-dimensional versus 2-dimensional liquid chromatography tandem mass spectrometry (LC-MS/MS) and their utility in characterizing whole cell lysate. We show that 2-dimensional LC-MS/MS can be a useful tool for characterizing global protein profiles and identify TRIAP1 as a novel regulator of cell proliferation in LNCaP metastatic prostate cancer cells.
Project description:Technological advances in liquid chromatography and tandem mass spectrometry (LC-MS/MS) have enabled comprehensive analyses of proteins and their post-translational modifications from cell culture and tissue samples. However, sample complexity necessitates offline prefractionation via a chromatographic method that is orthogonal to online reversed-phase high-performance liquid chromatography (RP-HPLC). This additional fractionation step improves target identification rates by reducing the complexity of the sample as it is introduced to the instrument. A commonly employed offline prefractionation method is high pH reversed-phase (Hi-pH RP) chromatography. Though highly orthogonal to online RP-HPLC, Hi-pH RP relies on buffers that interfere with electrospray ionization. Thus, samples that are prefractionated using Hi-pH RP are typically desalted prior to LC-MS/MS. In the present work, we evaluate an alternative offline prefractionation method, pentafluorophenyl (PFP)-based reversed-phase chromatography. Importantly, PFP prefractionation results in samples that are dried prior to analysis by LC-MS/MS. This reduction in sample handling relative to Hi-pH RP results in time savings and could facilitate higher target identification rates. Here, we have compared the performances of PFP and Hi-pH RP in offline prefractionation of peptides and phosphopeptides that have been isolated from human cervical carcinoma (HeLa) cells. Given the prevalence of isobaric mass tags for peptide quantification, we evaluated PFP chromatography of peptides labeled with tandem mass tags. Our results suggest that PFP is a viable alternative to Hi-pH RP for both peptide and phosphopeptide offline prefractionation.