Unknown

Dataset Information

0

Immune surveillance of brain metastatic cancer cells is mediated by IFITM1


ABSTRACT: Brain metastasis, most commonly originating from lung cancer, increases cancer morbidity and mortality. Although metastatic colonization is the rate-limiting and most complex step of the metastatic cascade, the underlying mechanisms are poorly understood. Here, in vivo genome-wide CRISPR-Cas9 screening revealed that loss of interferon-induced transmembrane protein 1 (IFITM1) promotes brain colonization of human lung cancer cells. Incipient brain metastatic cancer cells with high expression of IFITM1 secrete microglia-activating complement component 3 and enhance the cytolytic activity of CD8+ T cells by increasing the expression and membrane localization of major histocompatibility complex class I. After activation, microglia (of the innate immune system) and cytotoxic CD8+ T lymphocytes (of the adaptive immune system) were found to jointly eliminate cancer cells by releasing interferon gamma and inducing phagocytosis and T cell-mediated killing. In human cancer clinical trials, immune checkpoint blockade therapy response was significantly correlated with IFITM1 expression, and IFITM1 enhanced the brain metastasis suppression efficacy of PD-1 blockade in mice. Our results exemplify a novel mechanism through which metastatic cancer cells overcome the innate and adaptive immune responses to colonize the brain, and suggest that a combination therapy increasing IFITM1 expression in metastatic cells with PD-1 blockade may be a promising strategy to reduce metastasis.

SUBMITTER: Dr. Hua Gao 

PROVIDER: S-SCDT-10_15252-EMBJ_2022111112 | biostudies-other |

REPOSITORIES: biostudies-other

Similar Datasets

2023-02-17 | PXD038130 | Pride
2023-02-17 | PXD038129 | Pride
| S-EPMC5673063 | biostudies-literature
2019-11-29 | E-MTAB-7119 | biostudies-arrayexpress
2019-11-12 | PXD010677 | Pride
2015-02-03 | E-GEOD-65502 | biostudies-arrayexpress
2024-05-31 | PXD052781 | iProX
| S-EPMC6713475 | biostudies-literature