Loss of VGLL4 suppresses tumor PD-L1 expression and immune evasion
Ontology highlight
ABSTRACT: Targeting immune checkpoints, such as PD-L1 and its receptor PD-1 has opened a new avenue for treating cancers. Understanding the regulatory mechanism of PD-L1 and PD-1 will improve the clinical response rate and efficacy of PD-1/PD-L1 blockade in cancer patients and the development of combinatorial strategies. VGLL4 inhibits YAP-induced cell proliferation and tumorigenesis through competition with YAP for binding to TEADs. However, whether VGLL4 has a role in anti-tumor immunity is largely unknown. Here we found that disruption of Vgll4 results in potent T cell-mediated tumor regression in murine syngeneic models. VGLL4 deficiency reduces PD-L1 expression in tumor cells. VGLL4 interacts with IRF2BP2 and promotes its protein stability through inhibiting proteasome-mediated protein degradation. Loss of IRF2BP2 results in persistent binding of IRF2, a transcriptional repressor, to PD-L1 promoter. In addition, YAP inhibits IFNγ-inducible PD-L1 expression partially through suppressing the expression of VGLL4 and IRF1 by YAP target gene miR-130a. Our study identifies VGLL4 as an important regulator of PD-L1 expression and highlights a central role of VGLL4 and YAP in the regulation of tumor immunity.
SUBMITTER: Hai Song
PROVIDER: S-SCDT-EMBOJ-2018-99506 | biostudies-other |
REPOSITORIES: biostudies-other
ACCESS DATA