Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple negative breast cancer progression
Ontology highlight
ABSTRACT: TGF-? signaling pathway plays a key role in breast cancer metastasis. Recent studies suggest that TGF-? regulates tumor progression and invasion not only via transcriptional regulation, but also via translational regulation. Using both bioinformatics and experimental tools, we identified a micropeptide CIP2A-BP encoded by LINC00665, whose translation was downregulated by TGF-? in breast cancer cell lines. Using TNBC cell lines, we showed that TGF-? activated Smad signaling pathway induced the expression of translation inhibitory protein 4E-BP1, which inhibited eukaryote translation initiation factor elF4E, leading to reduced translation of CIP2A-BP from LINC00665. CIP2A-BP directly binds tumor oncogene CIP2A to replace PP2A's B56? subunit, thus releasing PP2A activity, which inhibits PI3K/AKT/NF?B pathway, resulting in decreased expression levels of MMP-2, MMP-9 and Snail. Downregulation of CIP2A-BP in TNBC patients was significantly associated with metastasis and poor overall survival. In the MMTV-PyMT model, either introducing CIP2A-BP gene or direct injection of CIP2A-BP micropeptide significantly reduced lung metastases and improved overall survival. In conclusion, we provide evidence that CIP2A-BP is both a prognostic marker and a novel therapeutic target for TNBC.
Project description:TGF-β signaling pathway plays a key role in breast cancer metastasis. Recent studies suggest that TGF-β regulates tumor progression and invasion not only via transcriptional regulation, but also via translational regulation. Using both bioinformatics and experimental tools, we identified a micropeptide CIP2A-BP encoded by LINC00665, whose translation was downregulated by TGF-β in breast cancer cell lines. Using TNBC cell lines, we showed that TGF-β-activated Smad signaling pathway induced the expression of translation inhibitory protein 4E-BP1, which inhibited eukaryote translation initiation factor elF4E, leading to reduced translation of CIP2A-BP from LINC00665. CIP2A-BP directly binds tumor oncogene CIP2A to replace PP2A's B56γ subunit, thus releasing PP2A activity, which inhibits PI3K/AKT/NFκB pathway, resulting in decreased expression levels of MMP-2, MMP-9, and Snail. Downregulation of CIP2A-BP in TNBC patients was significantly associated with metastasis and poor overall survival. In the MMTV-PyMT model, either introducing CIP2A-BP gene or direct injection of CIP2A-BP micropeptide significantly reduced lung metastases and improved overall survival. In conclusion, we provide evidence that CIP2A-BP is both a prognostic marker and a novel therapeutic target for TNBC.
Project description:Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) with the most aggressive phenotype and poor overall survival. Using bioinformatics tools, we identified LINC00908 encoding a 60-aa polypeptide and differentially expressed in TNBC tissues. We named this endogenously expressed polypeptide ASRPS (a small regulatory peptide of STAT3). ASRPS expression was down-regulated in TNBCs and associated with poor overall survival. We showed that LINC00908 was directly regulated by ER?, which was responsible for the differential down-regulation of LINC00908 in TNBCs. ASRPS directly bound to STAT3 through the coiled coil domain (CCD) and down-regulated STAT3 phosphorylation, which led to reduced expression of VEGF. In human endothelial cells, a mouse xenograft breast cancer model, and a mouse spontaneous BC model, ASRPS expression reduced angiogenesis. In a mouse xenograft breast cancer model, down-regulation of ASRPS promoted tumor growth, and ASRPS acted as an antitumor peptide. We presented strong evidence that LINC00908-encoded polypeptide ASRPS represented a TNBC-specific target for treatment.
Project description:We tested the efficacy of lapatinib, a dual tyrosine kinase inhibitor which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways, in a panel of triple-negative breast cancer (TNBC) cells, and examined the drug mechanism. Lapatinib showed an anti-proliferative effect in HCC 1937, MDA-MB-468, and MDA-MB-231 cell lines. Lapatinib induced significant apoptosis and inhibited CIP2A and p-Akt in a dose and time-dependent manner in the three TNBC cell lines. Overexpression of CIP2A reduced lapatinib-induced apoptosis in MDA-MB-468 cells. In addition, lapatinib increased PP2A activity (in relation to CIP2A inhibition). Moreover, lapatinib-induced apoptosis and p-Akt downregulation was attenuated by PP2A antagonist okadaic acid. Furthermore, lapatinib indirectly decreased CIP2A transcription by disturbing the binding of Elk1 to the CIP2A promoter. Importantly, lapatinib showed anti-tumor activity in mice bearing MDA-MB-468 xenograft tumors, and suppressed CIP2A as well as p-Akt in these xenografted tumors. In summary, inhibition of CIP2A determines the effects of lapatinib-induced apoptosis in TNBC cells. In addition to being a dual tyrosine kinase inhibitor of HER2 and EGFR, lapatinib also inhibits CIP2A/PP2A/p-Akt signaling in TNBC cells.
Project description:Melatonin has been reported to have tumor-suppressive effects via comprehensive molecular mechanisms, and long non-coding RNAs (lncRNAs) may participate in this process. However, the mechanism by which melatonin affects the function of lncRNAs in triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, is still unknown. Therefore, we aimed to investigate the differentially expressed mRNAs and lncRNAs in melatonin-treated TNBC cells and the interaction mechanisms. Microarray analyses were performed to identify differentially expressed mRNAs and lncRNAs in TNBC cell lines after melatonin treatment. To explore the functions and underlying mechanisms of the mRNAs and lncRNAs candidates, a series of in vitro experiments were conducted, including CCK-8, Transwell, colony formation, luciferase reporter gene, and RNA immunoprecipitation (RIP) assays, and mouse xenograft models were established. We found that after melatonin treatment, FUNDC1 and lnc049808 downregulated in TNBC cell lines. Knockdown of FUNDC1 and lnc049808 inhibited TNBC cell proliferation, invasion, and metastasis. Moreover, lnc049808 and FUNDC1 acted as competing endogenous RNAs (ceRNAs) for binding to miR-101. These findings indicated that melatonin inhibited TNBC progression through the lnc049808-FUNDC1 pathway and melatonin could be used as a potential therapeutic agent for TNBC.
Project description:BackgroundTriple-negative breast cancer (TNBC) remains difficult to be targeted. SET and cancerous inhibitor of protein phosphatase 2A (CIP2A) are intrinsic protein-interacting inhibitors of protein phosphatase 2A (PP2A) and frequently overexpressed in cancers, whereas reactivating PP2A activity has been postulated as an anti-cancer strategy. Here we explored this strategy in TNBC.MethodsData from The Cancer Genome Atlas (TCGA) database was analyzed. TNBC cell lines were used for in vitro studies. Cell viability was examined by MTT assay. The apoptotic cells were examined by flow cytometry and Western blot. A SET-PP2A protein-protein interaction antagonist TD19 was used to disrupt signal transduction. In vivo efficacy of TD19 was tested in MDA-MB-468-xenografted animal model.FindingsTCGA data revealed upregulation of SET and CIP2A and positive correlation of these two gene expressions in TNBC tumors. Ectopic SET or CIP2A increased cell viability, migration, and invasion of TNBC cells. Notably ERK inhibition increased PP2A activity. ERK activation is known crucial for Elk-1 activity, a transcriptional factor regulating CIP2A expression, we hypothesized an oncogenic feedforward loop consisting of pERK/pElk-1/CIP2A/PP2A. This loop was validated by knockdown of PP2A and ectopic expression of Elk-1, showing reciprocal changes in loop members. In addition, ectopic expression of SET increased pAkt, pERK, pElk-1 and CIP2A expressions, suggesting a positive linkage between SET and CIP2A signaling. Moreover, TD19 disrupted this CIP2A-feedforward loop by restoring PP2A activity, demonstrating in vitro and in vivo anti-cancer activity. Mechanistically, TD19 downregulated CIP2A mRNA via inhibiting pERK-mediated Elk-1 nuclear translocation thereby decreased Elk-1 binding to the CIP2A promoter.InterpretationThese findings suggested that a novel oncogenic CIP2A-feedforward loop contributes to TNBC progression and targeting SET to disrupt this oncogenic CIP2A loop showed therapeutic potential in TNBC.
Project description:BackgroundLong non-coding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and were initially believed to lack encoding capability. However, recent research has found open reading frames (ORFs) within lncRNAs, suggesting that they may have coding capacity. Despite this discovery, the mechanisms by which lncRNA-encoded products are involved in cancer are not well understood. The current study aims to investigate whether lncRNA HCP5-encoded products promote triple-negative breast cancer (TNBC) by regulating ferroptosis.MethodsWe used bioinformatics to predict the coding capacity of lncRNA HCP5 and conducted molecular biology experiments and a xenograft assay in nude mice to investigate the mechanism of its encoded products. We also evaluated the expression of the HCP5-encoded products in a breast cancer tissue microarray.ResultsOur analysis revealed that the ORF in lncRNA HCP5 can encode a protein with 132-amino acid (aa), which we named HCP5-132aa. Further experiments showed that HCP5-132aa promotes TNBC growth by regulating GPX4 expression and lipid ROS level through the ferroptosis pathway. Additionally, we found that the breast cancer patients with high levels of HCP5-132aa have poorer prognosis.ConclusionsOur study suggests that overexpression of lncRNA HCP5-encoded protein is a critical oncogenic event in TNBC, as it regulates ferroptosis. These findings could provide new therapeutic targets for the treatment of TNBC.
Project description:Dipyridamole is a widely prescribed drug in ischemic disorders, and it is here investigated for potential clinical use as a new treatment for breast cancer. Xenograft mice bearing triple-negative breast cancer 4T1-Luc or MDA-MB-231T cells were generated. In these in vivo models, dipyridamole effects were investigated for primary tumor growth, metastasis formation, cell cycle, apoptosis, signaling pathways, immune cell infiltration, and serum inflammatory cytokines levels. Dipyridamole significantly reduced primary tumor growth and metastasis formation by intraperitoneal administration. Treatment with 15 mg/kg/day dipyridamole reduced mean primary tumor size by 67.5 % (p = 0.0433), while treatment with 30 mg/kg/day dipyridamole resulted in an almost a total reduction in primary tumors (p = 0.0182). Experimental metastasis assays show dipyridamole reduces metastasis formation by 47.5 % in the MDA-MB-231T xenograft model (p = 0.0122), and by 50.26 % in the 4T1-Luc xenograft model (p = 0.0292). In vivo dipyridamole decreased activated β-catenin by 38.64 % (p < 0.0001), phospho-ERK1/2 by 25.05 % (p = 0.0129), phospho-p65 by 67.82 % (p < 0.0001) and doubled the expression of IkBα (p = 0.0019), thus revealing significant effects on Wnt, ERK1/2-MAPK and NF-kB pathways in both animal models. Moreover dipyridamole significantly decreased the infiltration of tumor-associated macrophages and myeloid-derived suppressor cells in primary tumors (p < 0.005), and the inflammatory cytokines levels in the sera of the treated mice. We suggest that when used at appropriate doses and with the correct mode of administration, dipyridamole is a promising agent for breast-cancer treatment, thus also implying its potential use in other cancers that show those highly activated pathways.
Project description:MicroRNAs (miRNAs) can be used to target a variety of human malignancy by targeting their oncogenes or tumor suppressor genes. The developmental endothelial locus-1 (Del-1) might be under miRNA regulation. This study investigated microRNA-137 (miR-137) function and Del-1 expression in triple-negative breast cancer (TNBC) cells and tissues. Del-1 mRNA and miRNA-137 levels were determined via qRT-PCR in breast cancer cells (MDA-MB-231, MCF7, SK-BR3, and T-47D) and tissues from 30 patients with TNBC. The effects of miR-137 on cell proliferation, migration, and invasion were determined using MTT assays, wound healing, and Matrigel transwell assays. The luciferase reporter assay revealed direct binding of miR-137 to the 3'-UTR of Del-1. miR-137 inhibited cell proliferation, migration, and invasion of MDA-MB-231 cells. Among the 30 TNBC specimens, miR-137 was downregulated and Del-1 level in plasma was significantly elevated relative to normal controls. It is concluded that miR-137 regulates Del-1 expression in TNBC by directly binding to the Del-1 gene and cancer progression. The results implicate miR-137 as a new therapeutic biomarker for patients with TNBC.
Project description:Estrogen receptor (ER)-negative, progesterone receptor (PR)-negative and HER2-negative, or "triple negative," breast cancer (TNBC) is a poor prognosis clinical subtype that occurs more frequently in younger women and is commonly treated with toxic chemotherapy. Effective targeted therapy for TNBC is urgently needed. Our previous studies have identified several kinases critical for TNBC growth. Since phosphatases regulate the function of kinase signaling pathways, we sought to identify critical growth-regulatory phosphatases that are expressed differentially in ER-negative, as compared to ER-positive, breast cancers. In this study, we examined the role of one of these differentially expressed phosphatases, the protein phosphatase Mg?+?2/Mn?+?2 dependent 1A (PPM1A) which is underexpressed in ER-negative breast cancer as compared to ER-positive breast cancers, in regulating TNBC growth. We found that PPM1A is deleted in ~40% of ER-negative breast cancers, and that induced expression of PPM1A suppresses in vitro and in vivo growth of TNBC cells. This study demonstrates that induction of PPM1A expression blocks the cell cycle and reduces CDK and Rb phosphorylation. These results suggest PPM1A is a crucial regulator of cell cycle progression in triple negative breast cancer. Our results also suggest that PPM1A loss should be explored as a predictive biomarker of CDK inhibitor sensitivity.
Project description:Aberrant alternative splicing has been highlighted as a potential hallmark of cancer. Here, we identify TDP43 (TAR DNA-binding protein 43) as an important splicing regulator responsible for the unique splicing profile in triple-negative breast cancer (TNBC). Clinical data demonstrate that TDP43 is highly expressed in TNBC with poor prognosis. Knockdown of TDP43 inhibits tumor progression, including proliferation and metastasis, and overexpression of TDP43 promotes proliferation and malignancy of mammary epithelial cells. Deep sequencing analysis and functional experiments indicate that TDP43 alters most splicing events with splicing factor SRSF3 (serine/arginine-rich splicing factor 3), in the regulation of TNBC progression. The TDP43/SRSF3 complex controls specific splicing events, including downstream genes PAR3 and NUMB The effect of reduced metastasis and proliferation upon the knockdown of TDP43 or SRSF3 is mediated by the splicing regulation of PAR3 and NUMB exon 12, respectively. The TDP43/SRSF3 complex and downstream PAR3 isoform are potential therapeutic targets for TNBC.