Specific N-glycans regulate an extracellular adhesion complex during dendrite patterning
Ontology highlight
ABSTRACT: N-glycans are molecularly diverse sugars borne by over 70% of proteins transiting the secretory pathway and have been implicated in protein folding, stability, and localization. Mutations in genes important for N-glycosylation result in congenital disorders of glycosylation that are often associated with intellectual disability. Here, we show that structurally distinct N-glycans regulate an extracellular protein complex involved in the patterning of somatosensory dendrites in Caenorhabditis elegans. Specifically, aman-2/Golgi alpha-mannosidase II, a conserved key enzyme in the biosynthesis of specific N-glycans, regulates the activity of the Menorin adhesion complex without obviously affecting protein stability and localization of its components. AMAN-2 functions cell-autonomously to allow decoration of the neuronal transmembrane receptor DMA-1/LRR-TM with the correct set of high-mannose/hybrid/paucimannose N-glycans. Moreover, distinct types of N-glycans on specific N-glycosylation sites regulate DMA-1/LRR-TM receptor function, which, together with three other extracellular proteins, forms the Menorin adhesion complex. In summary, specific N-glycan structures regulate dendrite patterning by coordinating the activity of an extracellular adhesion complex suggesting that the molecular diversity of N-glycans can contribute to developmental specificity in the nervous system.
SUBMITTER: Maisha Rahman
PROVIDER: S-SCDT-EMBOR-2021-54163-T | biostudies-other |
REPOSITORIES: biostudies-other
ACCESS DATA